清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MonoVAN: Visual Attention for Self-Supervised Monocular Depth Estimation

单眼 计算机科学 人工智能 估计 计算机视觉 工程类 系统工程
作者
Ilia Indyk,Ilya Makarov
标识
DOI:10.1109/ismar59233.2023.00138
摘要

Depth estimation is crucial in various computer vision applications, including autonomous driving, robotics, and virtual and augmented reality. An accurate scene depth map is beneficial for localization, spatial registration, and tracking. It converts 2D images into precise 3D coordinates for accurate positioning, seamlessly aligns virtual and real objects in applications like AR, and enhances object tracking by distinguishing distances. The self-supervised monocular approach is particularly promising as it eliminates the need for complex and expensive data acquisition setups relying solely on a standard RGB camera. Recently, transformer-based architectures have become popular to solve this problem, but at high quality, they suffer from high computational cost and poor perception of small details as they focus more on global information. In this paper, we propose a novel fully convolutional network for monocular depth estimation, called MonoVAN, which incorporates the visual attention mechanism and applies super-resolution techniques in decoder to better capture fine-grained details in depth maps. To the best of our knowledge, this work pioneers the use of a convolutional visual attention in the context of depth estimation. Our experiments on outdoor KITTI benchmark and the indoor NYUv2 dataset show that our approach outperforms the most advanced self-supervised methods, including such state-of-the-art models as transformer-based VTDepth from ISMAR'22 and hybrid convolutional-transformer MonoFormer from AAAI'23, while having a comparable or even fewer number of parameters in our model than competitors. We also validate the impact of each proposed improvement in isolation, providing evidence of its significant contribution. Code and weights are available at https://github.com/IlyaInd/MonoVAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的企鹅完成签到,获得积分10
13秒前
顾城应助飞翔的企鹅采纳,获得10
23秒前
25秒前
矛头蝮应助tutu采纳,获得30
39秒前
常有李完成签到,获得积分10
39秒前
vbnn完成签到 ,获得积分10
56秒前
FashionBoy应助科研通管家采纳,获得10
1分钟前
今后应助优美的剑愁采纳,获得10
1分钟前
DChen完成签到 ,获得积分10
1分钟前
涛1完成签到 ,获得积分10
1分钟前
1分钟前
tutu发布了新的文献求助10
1分钟前
2分钟前
夜雨完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
丰富的青梦完成签到,获得积分20
3分钟前
Jimmy完成签到 ,获得积分10
4分钟前
tutu发布了新的文献求助30
4分钟前
上官若男应助科研通管家采纳,获得10
5分钟前
5分钟前
lyj完成签到 ,获得积分10
5分钟前
珍珠火龙果完成签到 ,获得积分10
5分钟前
蜜桃小丸子完成签到 ,获得积分10
5分钟前
haralee完成签到 ,获得积分10
6分钟前
如歌完成签到,获得积分10
6分钟前
认真的冬易完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
阿巴阿巴茶完成签到,获得积分20
7分钟前
英俊的铭应助tutu采纳,获得30
8分钟前
nenoaowu应助tutu采纳,获得30
9分钟前
slayers发布了新的文献求助10
9分钟前
9分钟前
9分钟前
9分钟前
鬼见愁应助tutu采纳,获得10
9分钟前
10分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4184607
求助须知:如何正确求助?哪些是违规求助? 3720260
关于积分的说明 11723712
捐赠科研通 3398899
什么是DOI,文献DOI怎么找? 1864956
邀请新用户注册赠送积分活动 922482
科研通“疑难数据库(出版商)”最低求助积分说明 834058