亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLO_MRC: A fast and lightweight model for real-time detection and individual counting of Tephritidae pests

铁杉科 计算机科学 有害生物分析 病虫害防治 人工智能 生态学 生物 植物
作者
Min Wei,Wei Zhan
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:79: 102445-102445 被引量:6
标识
DOI:10.1016/j.ecoinf.2023.102445
摘要

Tephritidae pests severely affect the quality and safety of various melons, fruits and vegetable crops. However, many agricultural managers lack an adequate understanding of the level of pest occurrence, resulting in the misuse of pesticides, which ultimately leads to environmental pollution and economic loss. Therefore, real-time detection and counting of Tephritidae pests are important for timely pest spotting and control. This work helps quickly determine the distribution and abundance of pests in the current environment, thus providing data on pest conditions for agricultural management to optimize pesticide use. Nevertheless, the fast speed, high accuracy, and lightweight performance of real-time detection and counting are difficult to balance. To address this problem, based on the YOLOv8n model, this paper takes Bactrocera cucurbitae pests as the detection target and proposes a fast and lightweight real-time detection and individual counting model for Tephritidae pests, named YOLO_MRC. This paper introduces three key improvements: (1) Constructing a new module called Multicat into the neck network increases the focus on the detection target by incorporating an attention mechanism; (2) Reducing the original three detection heads to two and then adjusting their sizes to decrease the number of parameters in the network model; (3) Devising a novel module, C2flite, to enhance the deep feature extraction capability of the backbone network. According to the above points, this paper conducts ablation experiments to compare the performances of different models. Experiments showed that the Multicat module significantly offsets the large increase in GFLOPs and processing time caused by reducing the detection head and can further reduce the number of parameters and improve the accuracy when combined with the C2flite module. On our Bactrocera cucurbitae pest dataset, the [email protected] of the YOLO_MRC model reached 99.3%. Simultaneously, as the number of parameters decreases by 63.68%, GFLOPs is reduced by 19.75%, and the processing time is shortened by 5%. To ensure the validity of the model, YOLO_MRC is compared with four excellent detection models by using manual counting results as the benchmark. YOLO_MRC achieves an average pest counting accuracy of 94%, demonstrating superior performance in terms of model size and processing time. To further explore the performance of YOLO_MRC in multiclass insect detection tasks, we choose the public dataset Pest_24_640 for comparison with four state-of-the-art models. YOLO_MRC achieves a 3.6 ms processing time and 70.4% accuracy with only a 2.4 MB model size, which demonstrates the potential of YOLO_MRC in multiclass pest detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小羊完成签到,获得积分10
2秒前
小羊发布了新的文献求助10
16秒前
所所应助Xin采纳,获得10
50秒前
科研通AI5应助小羊采纳,获得10
51秒前
59秒前
1分钟前
Xin发布了新的文献求助10
1分钟前
哈哈哈完成签到,获得积分10
1分钟前
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Xin完成签到,获得积分10
1分钟前
水水水完成签到 ,获得积分10
2分钟前
为你钟情完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
noss发布了新的文献求助10
2分钟前
小蘑菇应助依然灬聆听采纳,获得10
4分钟前
科研通AI5应助大力的千筹采纳,获得10
4分钟前
耳东陈完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
清爽的诗云完成签到 ,获得积分10
5分钟前
666发布了新的文献求助10
6分钟前
Panther完成签到,获得积分10
6分钟前
7分钟前
jeff发布了新的文献求助10
7分钟前
666完成签到,获得积分10
7分钟前
sleet完成签到 ,获得积分10
8分钟前
9分钟前
wanci应助Liu采纳,获得10
9分钟前
10分钟前
Liu发布了新的文献求助10
10分钟前
Liu完成签到,获得积分10
10分钟前
11分钟前
兴奋的定帮完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779140
求助须知:如何正确求助?哪些是违规求助? 3324759
关于积分的说明 10219855
捐赠科研通 3039890
什么是DOI,文献DOI怎么找? 1668476
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503