Probability prediction of groundstroke stances among male professional tennis players using a tree-augmented Bayesian network

贝叶斯概率 计算机科学 树(集合论) 贝叶斯网络 统计 心理学 机器学习 计量经济学 人工智能 数学 数学分析
作者
Jing Zhou,Yu Liu
出处
期刊:International Journal of Performance Analysis in Sport [Taylor & Francis]
卷期号:24 (5): 403-415 被引量:3
标识
DOI:10.1080/24748668.2024.2314646
摘要

The use of different stances can provide tennis players with a tactical advantage since it enables them to cover a larger court area faster. This is especially critical since the entire stroke process takes only 1.5 seconds. However, it is unclear which stance is most suitable on the court. The purpose of the study was to predict the probability of the four stances used for forehand and two-handed backhand (2BH) in different court situations. Four influencing variables (landing zone of the ball (LZB), positioning of the player (PP), returning direction of the ball, landing zone of the returning ball) and one target variable (groundstroke stance) were collected from 3,850 successful shots at the Australian Open by a notation system to train a Bayesian network. Conditional probabilities of stance were estimated based on the two dominant influencing variables derived from Bayesian modelling. Both PP (0.53) and LZB (0.29) were identified as the most dominant influencing variables for stance selection. Probability distributions indicated that open and semi-open stances were most commonly used for forehand strokes, while closed stance was prevalent for 2BH strokes. Our preliminary findings provide insights into the court usage characteristics of the forehand and 2BH in dominant stances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
震动的千萍完成签到,获得积分10
1秒前
科研通AI5应助hello采纳,获得10
1秒前
yong发布了新的文献求助15
1秒前
仰望发布了新的文献求助10
1秒前
1秒前
2秒前
yanyan完成签到,获得积分10
2秒前
SYLH应助封小封采纳,获得10
2秒前
奋斗雨雪完成签到,获得积分10
3秒前
拼搏菠萝完成签到,获得积分10
4秒前
4秒前
111完成签到,获得积分10
5秒前
sally_5202完成签到,获得积分10
5秒前
5秒前
5秒前
完美世界应助哈哈哈采纳,获得10
5秒前
天天快乐应助三叶草采纳,获得10
5秒前
龙霸天发布了新的文献求助10
5秒前
鱼儿发布了新的文献求助10
6秒前
6秒前
6秒前
不安的斑马完成签到,获得积分10
6秒前
6秒前
长安发布了新的文献求助10
6秒前
善学以致用应助Frim采纳,获得10
7秒前
方明会发布了新的文献求助10
7秒前
8秒前
拜了个拜完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
andy发布了新的文献求助10
9秒前
Cheney3完成签到,获得积分10
10秒前
郭一只发布了新的文献求助10
10秒前
锈了的xuebxuebi雪碧完成签到,获得积分10
10秒前
顾矜应助炙热晓露采纳,获得10
10秒前
wxy发布了新的文献求助10
10秒前
zmj完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806200
求助须知:如何正确求助?哪些是违规求助? 3350995
关于积分的说明 10352451
捐赠科研通 3066890
什么是DOI,文献DOI怎么找? 1684167
邀请新用户注册赠送积分活动 809367
科研通“疑难数据库(出版商)”最低求助积分说明 765487