Dense Tiny Object Detection: A Scene Context Guided Approach and A Unified Benchmark

水准点(测量) 计算机科学 背景(考古学) 人工智能 目标检测 计算机视觉 对象(语法) 遥感 模式识别(心理学) 地质学 地图学 地理 古生物学
作者
Zhicheng Zhao,Jiaxin Du,Chenglong Li,Xiang Fang,Yun Xiao,Jin Tang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2024.3357706
摘要

With the continuous advancement of remote sensing observation technology, wide-area observation and high-resolution imaging make remote sensing images contain a large number of dense tiny objects. The detection of dense tiny objects is a very challenging task since these objects are with very low resolution and might stick together. Existing work lacks further exploration of the contextual scene information and inherent characteristics of dense tiny objects, which are crucial for performance improvement of dense tiny object detection. In this work, we propose a novel Scene Contextualized Detection Network (SCDNet) by decoupling scene contextual information through a dedicated scene classification sub-network, thereby enabling an enhanced exploration of the relationship between tiny objects and their surrounding environments. In particular, we design a lightweight scene context guided fusion module in SCDNet to incorporate scene context information around dense tiny objects more effectively. Moreover, we further develop the scene context guided foreground enhancement module to suppress the background information while enhancing the foreground information based on the scene information. In addition, this research field still lacks a large-scale benchmark dataset with dense tiny objects, which is crucial for the training and comprehensive evaluation of detection methods. To this end, we construct a large-scale dataset for dense tiny object detection. It contains 11,600 images with 1,019,800 instances, the average absolute size of objects is smaller than 13 pixels, and each image contains 88 objects on average. Extensive experiments are conducted on the proposed dataset, and the results demonstrate the superiority and effectiveness of SCDNet compared to existing methods. The dataset and evaluation code are available at https://github.com/mmic-lcl.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分10
1秒前
mili发布了新的文献求助10
3秒前
5秒前
6秒前
6秒前
billkin完成签到,获得积分10
6秒前
6秒前
共享精神应助友好飞松采纳,获得10
7秒前
7秒前
zz发布了新的文献求助10
8秒前
呱呱发布了新的文献求助20
8秒前
科目三应助冷方荣采纳,获得10
9秒前
yumeng发布了新的文献求助10
10秒前
iNk应助万友儿采纳,获得10
11秒前
dabing发布了新的文献求助10
11秒前
晚睡生完成签到 ,获得积分10
11秒前
Sun发布了新的文献求助10
14秒前
打打应助dabing采纳,获得10
15秒前
15秒前
平常的毛豆应助许起眸采纳,获得10
17秒前
阉太狼完成签到,获得积分10
19秒前
iNk应助宁小满采纳,获得10
19秒前
烟花应助陈熹采纳,获得10
19秒前
李健的小迷弟应助GAOGONGZI采纳,获得10
21秒前
junyang发布了新的文献求助10
21秒前
昏睡的蟠桃给善良的剑通的求助进行了留言
22秒前
梁晓玲完成签到,获得积分10
23秒前
迷路以蓝完成签到,获得积分10
23秒前
yumeng完成签到,获得积分10
24秒前
28秒前
勤恳涵菡完成签到 ,获得积分20
29秒前
31秒前
31秒前
袋鼠发布了新的文献求助10
33秒前
远山黛完成签到 ,获得积分10
34秒前
35秒前
37秒前
GAOGONGZI发布了新的文献求助10
37秒前
pluto应助MDLX采纳,获得10
37秒前
欣慰土豆完成签到 ,获得积分0
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780272
求助须知:如何正确求助?哪些是违规求助? 3325576
关于积分的说明 10223619
捐赠科研通 3040740
什么是DOI,文献DOI怎么找? 1668987
邀请新用户注册赠送积分活动 798955
科研通“疑难数据库(出版商)”最低求助积分说明 758648