Speech Emotion Recognition using Extreme Machine Learning

混合模型 计算机科学 Mel倒谱 人工智能 语音识别 随机森林 模式识别(心理学) 任务(项目管理) 特征(语言学) 特征提取 支持向量机 情绪分类 高斯分布 语言学 哲学 物理 管理 量子力学 经济
作者
Valli Madhavi Koti,Krishna Murthy,M. Suganya,Meduri Sridhar Sarma,Gollakota V S S Seshu Kumar,N. M. Balamurugan
出处
期刊:EAI endorsed transactions on internet of things [European Alliance for Innovation]
卷期号:10 被引量:3
标识
DOI:10.4108/eetiot.4485
摘要

Detecting Emotion from Spoken Words (SER) is the task of detecting the underlying emotion in spoken language. It is a challenging task, as emotions are subjective and highly contextual. Machine learning algorithms have been widely used for SER, and one such algorithm is the Gaussian Mixture Model (GMM) algorithm. The GMM algorithm is a statistical model that represents the probability distribution of a random variable as a sum of Gaussian distributions. It has been widely used for speech recognition and classification tasks. In this article, we offer a method for SER using Extreme Machine Learning (EML) with the GMM algorithm. EML is a type of machine learning that uses randomization to achieve high accuracy at a low computational cost. It has been effectively utilised in various classification tasks. For the planned approach includes two steps: feature extraction and emotion classification. Cepstral Coefficients of Melody Frequency (MFCCs) are used in order to extract features. MFCCs are commonly used for speech processing and represent the spectral envelope of the speech signal. The GMM algorithm is used for emotion classification. The input features are modelled as a mixture of Gaussians, and the emotion is classified based on the likelihood of the input features belonging to each Gaussian. Measurements were taken of the suggested method on the The Berlin Database of Emotional Speech (EMO-DB) and achieved an accuracy of 74.33%. In conclusion, the proposed approach to SER using EML and the GMM algorithm shows promising results. It is a computationally efficient and effective approach to SER and can be used in various applications, such as speech-based emotion detection for virtual assistants, call centre analytics, and emotional analysis in psychotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu发布了新的文献求助10
刚刚
博修发布了新的文献求助10
1秒前
科研通AI5应助wyl采纳,获得10
1秒前
伶俐芷珊完成签到,获得积分10
1秒前
LBF发布了新的文献求助10
2秒前
2秒前
4秒前
叶十七发布了新的文献求助10
6秒前
古月完成签到,获得积分10
6秒前
6秒前
万能图书馆应助博修采纳,获得10
8秒前
快乐小马发布了新的文献求助10
8秒前
9秒前
tkxfy完成签到,获得积分10
11秒前
伯赏满天发布了新的文献求助10
11秒前
12秒前
sun完成签到,获得积分10
13秒前
852应助阿九采纳,获得10
14秒前
wyx发布了新的文献求助10
15秒前
Qing完成签到,获得积分10
17秒前
若雨凌风应助快乐小马采纳,获得20
17秒前
可爱的函函应助xmyyy采纳,获得10
17秒前
英姑应助魔法签证1993采纳,获得10
18秒前
18秒前
丧彪发布了新的文献求助10
19秒前
今天进步了吗完成签到,获得积分10
21秒前
阮大帅气完成签到,获得积分10
22秒前
佳妮发布了新的文献求助10
22秒前
23秒前
xixihaha完成签到,获得积分10
23秒前
24秒前
Candice完成签到,获得积分10
24秒前
25秒前
25秒前
Murphy发布了新的文献求助10
25秒前
攀攀完成签到,获得积分10
26秒前
xmyyy完成签到,获得积分10
26秒前
27秒前
27秒前
彻底完成签到,获得积分10
27秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799386
求助须知:如何正确求助?哪些是违规求助? 3344983
关于积分的说明 10322805
捐赠科研通 3061457
什么是DOI,文献DOI怎么找? 1680341
邀请新用户注册赠送积分活动 807036
科研通“疑难数据库(出版商)”最低求助积分说明 763462