Discriminative and Robust Autoencoders for Unsupervised Feature Selection

判别式 离群值 聚类分析 稳健性(进化) 特征选择 利用 计算机科学 人工智能 模式识别(心理学) 符号 机器学习 数据挖掘 数学 生物化学 化学 计算机安全 算术 基因
作者
Yunzhi Ling,Feiping Nie,Weizhong Yu,Xuelong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:6
标识
DOI:10.1109/tnnls.2023.3333737
摘要

Many recent research works on unsupervised feature selection (UFS) have focused on how to exploit autoencoders (AEs) to seek informative features. However, existing methods typically employ the squared error to estimate the data reconstruction, which amplifies the negative effect of outliers and can lead to performance degradation. Moreover, traditional AEs aim to extract latent features that capture intrinsic information of the data for accurate data recovery. Without incorporating explicit cluster structure-detecting objectives into the training criterion, AEs fail to capture the latent cluster structure of the data which is essential for identifying discriminative features. Thus, the selected features lack strong discriminative power. To address the issues, we propose to jointly perform robust feature selection and $k$ -means clustering in a unified framework. Concretely, we exploit an AE with a $l_{2,1}$ -norm as a basic model to seek informative features. To improve robustness against outliers, we introduce an adaptive weight vector for the data reconstruction terms of AE, which assigns smaller weights to the data with larger errors to automatically reduce the influence of the outliers, and larger weights to the data with smaller errors to strengthen the influence of clean data. To enhance the discriminative power of the selected features, we incorporate $k$ -means clustering into the representation learning of the AE. This allows the AE to continually explore cluster structure information, which can be used to discover more discriminative features. Then, we also present an efficient approach to solve the objective of the corresponding problem. Extensive experiments on various benchmark datasets are provided, which clearly demonstrate that the proposed method outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
benben发布了新的文献求助10
2秒前
2秒前
3秒前
小二郎应助甲氨蝶呤采纳,获得10
5秒前
5秒前
6秒前
7秒前
YUY完成签到,获得积分10
7秒前
7秒前
风清扬发布了新的文献求助10
8秒前
9秒前
ding应助Viola采纳,获得10
9秒前
安瑞巴蒂发布了新的文献求助10
9秒前
WQY发布了新的文献求助10
10秒前
猪猪hero发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
东风压倒西风完成签到,获得积分10
13秒前
14秒前
ding应助ccc采纳,获得10
18秒前
靓丽的熠彤完成签到,获得积分10
20秒前
Muy1发布了新的文献求助10
20秒前
Jetaro完成签到,获得积分10
21秒前
希望天下0贩的0应助WQY采纳,获得10
23秒前
Lucas应助一塔湖图采纳,获得10
23秒前
素简完成签到,获得积分10
24秒前
25秒前
ccc完成签到,获得积分10
26秒前
27秒前
29秒前
30秒前
31秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
碧蓝可乐完成签到,获得积分10
36秒前
overlood完成签到 ,获得积分10
36秒前
weiwei发布了新的文献求助10
36秒前
Jennifer完成签到 ,获得积分10
39秒前
欣向是橙发布了新的文献求助10
40秒前
41秒前
42秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4254118
求助须知:如何正确求助?哪些是违规求助? 3786850
关于积分的说明 11885639
捐赠科研通 3437275
什么是DOI,文献DOI怎么找? 1886525
邀请新用户注册赠送积分活动 937680
科研通“疑难数据库(出版商)”最低求助积分说明 843334