Multiscale Attention-Based Subdomain Dynamic Adaptation for Cross-Domain Scene Classification

域适应 计算机科学 适应(眼睛) 领域(数学分析) 人工智能 模式识别(心理学) 数学 数学分析 物理 分类器(UML) 光学
作者
Xinyu Wang,Haixia Xu,Furong Shi,Liming Yuan,Xianbin Wen
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2024.3367623
摘要

Cross-domain scene classification is proposed to address the problems of difficult labeling of remote-sensing (RS) image datasets and poor generalization ability of supervised models, aiming to better utilize existing knowledge. To minimize the difference between the source- and target-domain distributions, many deep-domain adaptation methods have been generated, but most of them are based on the difference metric function, which only globally aligns the edge distributions without taking into account the effect of each sample on the network in different and the relationship between related subdomains in different domains of the same category, resulting in a large amount of fine-grained information being lost. In addition, existing domain adaptation methods do not adaptively balance the weights of the marginal and conditional distributions well. To overcome the above difficulties, a multiscale attention-based subdomain dynamic adaptation (SAMRA) method is proposed. The relative importance of the two is balanced by calculating the dynamic weights of each sample in the different domains to globally adjust the marginal distribution and by obtaining finer-grained key information from the subdomains to locally adjust the conditional distribution. Moreover, multiscale feature generation and attention mechanisms support the extraction of more robust features and more complete information, as well as more purposeful transfer. The results of cross-domain experiments show that the improvement of SAMRA over state-of-the-art deep-domain adaptation methods is significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
项烙发布了新的文献求助10
1秒前
甜美的月饼完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
刘小孩发布了新的文献求助10
5秒前
7秒前
童蒙完成签到,获得积分10
7秒前
tututu发布了新的文献求助10
7秒前
无花果应助luobeimin采纳,获得20
8秒前
ding应助Ran采纳,获得10
8秒前
路脚下完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
guo完成签到,获得积分0
10秒前
海鸥应助看不懂采纳,获得10
11秒前
智慧女孩完成签到,获得积分10
12秒前
sendou发布了新的文献求助10
13秒前
13秒前
chenpeng123发布了新的文献求助20
13秒前
mianbao发布了新的文献求助10
14秒前
科研通AI6应助碧蓝皮卡丘采纳,获得10
15秒前
16秒前
16秒前
共享精神应助豌豆射手采纳,获得10
16秒前
Rinamamiya应助tututu采纳,获得20
19秒前
Ran发布了新的文献求助10
20秒前
20秒前
Lucas应助三金采纳,获得10
20秒前
梵高的向日葵完成签到,获得积分10
21秒前
卜懂得完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
WSND发布了新的文献求助10
25秒前
豌豆射手发布了新的文献求助10
28秒前
30秒前
30秒前
小周周完成签到,获得积分10
33秒前
三金发布了新的文献求助10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Biocontamination Control for Pharmaceuticals and Healthcare 2nd Edition 1300
Stereoelectronic Effects 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4201928
求助须知:如何正确求助?哪些是违规求助? 3736722
关于积分的说明 11766109
捐赠科研通 3409160
什么是DOI,文献DOI怎么找? 1870511
邀请新用户注册赠送积分活动 926092
科研通“疑难数据库(出版商)”最低求助积分说明 836385