Rumor spreading model with a focus on educational impact and optimal control

谣言 计算机科学 光学(聚焦) 控制(管理) 最优控制 环境科学 人工智能 计量经济学 数学 数学优化 公共关系 物理 政治学 光学
作者
Deliang Li,Yi Zhao,Yang Deng
出处
期刊:Nonlinear Dynamics [Springer Science+Business Media]
卷期号:112 (2): 1575-1597 被引量:16
标识
DOI:10.1007/s11071-023-09102-5
摘要

Rumor spreading brings great misconception and harm to society. To control the spread of rumors, it is essential to model rumor propagation and provide appropriate interference in inhibiting the propagation. In this paper, we establish an extended rumor-spreading model with a focus on the influence of knowledge education and intervention strategies in reducing rumor propagation. The mathematical rationality of the proposed model is examined, which demonstrates the existence of equilibrium and local asymptotic stability. To simulate the dynamics of rumor spreading in the proposed model and calibrate its unknown variables to a real case, we employ a novel rumor-informed neural network (RINN), which is constructed based on the physics-informed neural network (PINN) and real rumor spreading. The numerical simulation experiments indicate that the reinforcement of education on rumor identification and timely refutation of false information is effective in controlling the propagation of rumors. Moreover, the optimal control strategies are further proposed to determine the efficient means of mitigating the risk associated with the rapid spread of rumors. Our findings present that proactive dissemination of publicity and educational content can effectively enhance individuals’ awareness of rumor information. Specifically, prompt dispelling of false information can result in a higher success rate of dispelling rumors, a shorter duration of rumor dissemination, and a lower peak in the number of rumor disseminators, thereby facilitating effective control of the spread of rumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好的妍完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
4秒前
5秒前
在水一方应助阔达碧空采纳,获得10
6秒前
6秒前
7秒前
iNk应助sophieCCM0302采纳,获得10
7秒前
9秒前
香蕉觅云应助火星的雪采纳,获得10
10秒前
影子1127发布了新的文献求助10
10秒前
11秒前
wait发布了新的文献求助10
15秒前
15秒前
777777发布了新的文献求助30
17秒前
MoLuan发布了新的文献求助10
17秒前
科研通AI5应助rex采纳,获得10
18秒前
18秒前
18秒前
sss完成签到,获得积分10
18秒前
19秒前
阔达碧空发布了新的文献求助10
21秒前
21秒前
dd36发布了新的文献求助10
21秒前
MOMO完成签到,获得积分10
25秒前
超锅发布了新的文献求助10
26秒前
大佬完成签到,获得积分10
26秒前
zzjjhh完成签到,获得积分10
28秒前
momo完成签到,获得积分10
28秒前
29秒前
大佬发布了新的文献求助10
32秒前
34秒前
x111发布了新的文献求助10
34秒前
35秒前
35秒前
36秒前
37秒前
充电宝应助刘斌采纳,获得20
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784026
求助须知:如何正确求助?哪些是违规求助? 3329139
关于积分的说明 10240292
捐赠科研通 3044643
什么是DOI,文献DOI怎么找? 1671163
邀请新用户注册赠送积分活动 800161
科研通“疑难数据库(出版商)”最低求助积分说明 759193