Evaluation of high-resolution meteorological data products using flux tower observations across Brazil

塔楼 气象学 焊剂(冶金) 环境科学 遥感 大气科学 气候学 地理 物理 地质学 材料科学 考古 冶金
作者
Jamie Robert Cameron Brown,Ross Woods,Humberto Ribeiro da Rocha,Débora Regina Roberti,Rafael Rosolem
标识
DOI:10.5194/egusphere-2025-883
摘要

Abstract. In the past decade, the scientific community has seen an increase in the number of global hydrometeorological products. This has been possible with efforts to push continental and global land surface modelling to hyper-resolution applications. As the resolution of these datasets increase, so does the need to compare their estimates against local in-situ measurements. This is particularly important for Brazil, whose large continental scale domain results in a wide range of climates and biomes. In this study, high-resolution (0.1 to 0.25 degrees) global and regional meteorological datasets are compared against flux tower observations at 11 sites across Brazil (for periods between 1999–2010), covering Brazil’s main land cover types (tropical rainforest, woodland savanna, various croplands, and tropical dry forests). The purpose of the study is to assess the quality of four global reanalysis products [ERA5-Land, GLDAS2.0, GLDAS2.1, and MSWEPv2.2] and one regional gridded dataset developed from local interpolation of meteorological variables across the country [Brazilian National Meteorological Database (referred here as BNMD)]. The surface meteorological variables we considered were precipitation, air temperature, wind speed, atmospheric pressure, downward shortwave and longwave radiation, and specific humidity. Data products were evaluated for their ability to reproduce the daily and monthly meteorological observations at flux towers. A ranking system for data products was developed based on the mean squared error (MSE). To identify the possible causes for these errors, further analysis was undertaken to determine the contributions of correlation, bias, and variation to the MSE. Results show that, for precipitation, MSWEP outperforms the other datasets at daily scales but at a monthly scale BNMD performs best. For all other variables, ERA5-Land achieved the best ranking (smallest) errors at the daily scale and averaged the best rank for all variables at the monthly scale. GLDAS2.0 performed least well at both temporal scales, however the newer version (GLDAS2.1) was an improvement of its older version for almost every variable. BNMD wind speed and GLDAS2.0 shortwave radiation outperformed the other datasets at a monthly scale. The largest contribution to the MSE at the daily scale for all datasets and variables was the correlation contribution whilst at the monthly scale it was the bias contribution. ERA5-Land is recommended when using multiple hydro-meteorological variables to force land-surface models within Brazil.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁翰将军完成签到 ,获得积分10
刚刚
刚刚
简简单单发布了新的文献求助10
刚刚
1秒前
心灵美的芝麻完成签到,获得积分10
1秒前
诚心的凌旋完成签到,获得积分20
2秒前
2秒前
李健应助雨淋沐风采纳,获得10
3秒前
wanglong0118发布了新的文献求助10
3秒前
LC发布了新的文献求助10
4秒前
无花果应助松子采纳,获得10
4秒前
sakiecon完成签到,获得积分10
4秒前
言亦云发布了新的文献求助10
4秒前
ceploup完成签到,获得积分10
4秒前
4秒前
小新完成签到,获得积分20
5秒前
小杨发布了新的文献求助10
5秒前
5秒前
李健应助高挑的小蝴蝶采纳,获得10
6秒前
SHIMMER发布了新的文献求助10
6秒前
执着谷兰发布了新的文献求助10
7秒前
福禄小哥发布了新的文献求助10
7秒前
7秒前
Pluto0o发布了新的文献求助10
7秒前
ddssa1988完成签到,获得积分10
8秒前
没药完成签到 ,获得积分10
8秒前
SYLH应助友好的白柏采纳,获得10
8秒前
无聊的人完成签到 ,获得积分10
9秒前
Gauss应助酵母君采纳,获得30
9秒前
SYLH应助只因采纳,获得30
9秒前
eye完成签到,获得积分10
9秒前
lxx完成签到 ,获得积分10
9秒前
VIVA发布了新的文献求助10
10秒前
所所应助恣意采纳,获得10
10秒前
11秒前
龚广山完成签到,获得积分10
11秒前
11秒前
zkyyinf_zero发布了新的文献求助10
11秒前
Clearly完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977341
求助须知:如何正确求助?哪些是违规求助? 3521546
关于积分的说明 11208902
捐赠科研通 3258622
什么是DOI,文献DOI怎么找? 1799300
邀请新用户注册赠送积分活动 878198
科研通“疑难数据库(出版商)”最低求助积分说明 806810