Evaluation of high-resolution meteorological data products using flux tower observations across Brazil

塔楼 气象学 焊剂(冶金) 环境科学 遥感 大气科学 气候学 地理 物理 地质学 材料科学 考古 冶金
作者
Jamie Robert Cameron Brown,Ross Woods,Humberto Ribeiro da Rocha,Débora Regina Roberti,Rafael Rosolem
标识
DOI:10.5194/egusphere-2025-883
摘要

Abstract. In the past decade, the scientific community has seen an increase in the number of global hydrometeorological products. This has been possible with efforts to push continental and global land surface modelling to hyper-resolution applications. As the resolution of these datasets increase, so does the need to compare their estimates against local in-situ measurements. This is particularly important for Brazil, whose large continental scale domain results in a wide range of climates and biomes. In this study, high-resolution (0.1 to 0.25 degrees) global and regional meteorological datasets are compared against flux tower observations at 11 sites across Brazil (for periods between 1999–2010), covering Brazil’s main land cover types (tropical rainforest, woodland savanna, various croplands, and tropical dry forests). The purpose of the study is to assess the quality of four global reanalysis products [ERA5-Land, GLDAS2.0, GLDAS2.1, and MSWEPv2.2] and one regional gridded dataset developed from local interpolation of meteorological variables across the country [Brazilian National Meteorological Database (referred here as BNMD)]. The surface meteorological variables we considered were precipitation, air temperature, wind speed, atmospheric pressure, downward shortwave and longwave radiation, and specific humidity. Data products were evaluated for their ability to reproduce the daily and monthly meteorological observations at flux towers. A ranking system for data products was developed based on the mean squared error (MSE). To identify the possible causes for these errors, further analysis was undertaken to determine the contributions of correlation, bias, and variation to the MSE. Results show that, for precipitation, MSWEP outperforms the other datasets at daily scales but at a monthly scale BNMD performs best. For all other variables, ERA5-Land achieved the best ranking (smallest) errors at the daily scale and averaged the best rank for all variables at the monthly scale. GLDAS2.0 performed least well at both temporal scales, however the newer version (GLDAS2.1) was an improvement of its older version for almost every variable. BNMD wind speed and GLDAS2.0 shortwave radiation outperformed the other datasets at a monthly scale. The largest contribution to the MSE at the daily scale for all datasets and variables was the correlation contribution whilst at the monthly scale it was the bias contribution. ERA5-Land is recommended when using multiple hydro-meteorological variables to force land-surface models within Brazil.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nilu完成签到,获得积分10
4秒前
爆米花应助传统的朝雪采纳,获得10
4秒前
4秒前
天天快乐应助谭朵朵采纳,获得10
4秒前
4秒前
浮游应助桑榆非晚采纳,获得10
4秒前
狼来了aas发布了新的文献求助10
4秒前
zty568发布了新的文献求助10
5秒前
科研通AI5应助追寻的丹南采纳,获得10
6秒前
深情安青应助yy采纳,获得10
7秒前
科研通AI5应助Zeng采纳,获得30
8秒前
海德堡发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
Berserker发布了新的文献求助10
11秒前
11秒前
agentwang完成签到,获得积分10
12秒前
13秒前
hjy完成签到,获得积分10
15秒前
炙热晓露发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
HH完成签到 ,获得积分10
18秒前
18秒前
徐梓睿发布了新的文献求助50
18秒前
19秒前
渡劫发布了新的文献求助10
19秒前
洪亮完成签到,获得积分10
20秒前
21秒前
21秒前
蒜香炒田鸡应助小高采纳,获得10
22秒前
22秒前
852应助害羞外套采纳,获得10
22秒前
凉默言发布了新的文献求助10
24秒前
24秒前
洪亮发布了新的文献求助10
24秒前
Wonder罗发布了新的文献求助10
25秒前
忧郁的夏槐应助xx采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050643
求助须知:如何正确求助?哪些是违规求助? 4278259
关于积分的说明 13335988
捐赠科研通 4093268
什么是DOI,文献DOI怎么找? 2240220
邀请新用户注册赠送积分活动 1246861
关于科研通互助平台的介绍 1175806