Shield tunneling efficiency and stability enhancement based on interpretable machine learning and multi-objective optimization

量子隧道 理论(学习稳定性) 人工智能 计算机科学 材料科学 机器学习 光电子学
作者
Wenli Liu,Yang Chen,Tianxiang Liu,Wenzhao Liu,Jue Li,Yangyang Chen
出处
期刊:Underground Space [Elsevier]
卷期号:22: 320-336 被引量:5
标识
DOI:10.1016/j.undsp.2025.01.001
摘要

Adequate control of shield machine parameters to ensure the safety and efficiency of shield construction is a difficult and complex problem. To address this problem, this paper proposes a hybrid intelligent optimization framework that combines interpretable machine learning, intelligent optimization algorithms, and multi-objective optimization and decision-making methods. The nonlinear relationship between the input parameters and ground settlement (GS) is fitted based on the light gradient boosting machine (LGBM), and the effect of the input parameters on GS is analysed based on SHapley additive exPlanation for further feature selection. Subsequently, the hyperparameters of LGBM were determined based on the sparrow search algorithm (SSA) to better fit the input–output relationship. On this basis, a multi-objective intelligent optimization model is established to solve the optimized operating parameters of shield machine by non-dominated sorting genetic algorithm II and technique for order preference by similarity to ideal solution to reduce GS and improve drilling efficiency. The results demonstrate that the SSA-LGBM model predicts GS with high accuracy, exhibiting an RMSE of 4.775, a VAF of 0.930 and an R2 of 0.931. These metrics collectively reflect the model’s excellent performance in prediction accuracy, ability to explain data variability, and control of prediction bias. The multi-objective optimization model is effective in optimizing two objectives, and the improvement can reach up to 39.38%; at the same time, the model has high scalability and can also be applied to three or more objectives. The intelligent optimization framework for shield construction parameters proposed in this paper can generate the optimal parameter combinations for shield machine manipulation, and provide reference and guidance when there are conflicting optimization objectives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Akim应助会飞的猪采纳,获得10
3秒前
777完成签到,获得积分20
4秒前
秋水完成签到,获得积分10
6秒前
Zoe_Zhang完成签到,获得积分10
10秒前
倩Q完成签到,获得积分10
13秒前
14秒前
淡蓝时光完成签到 ,获得积分10
14秒前
16秒前
16秒前
16秒前
caya完成签到 ,获得积分20
17秒前
17秒前
17秒前
18秒前
Owen应助陈星锦采纳,获得10
18秒前
18秒前
小鱼同学完成签到,获得积分10
19秒前
19秒前
HHHHH完成签到,获得积分10
19秒前
19秒前
郑丽琴完成签到 ,获得积分10
21秒前
wanci应助scott采纳,获得10
21秒前
22秒前
22秒前
23秒前
pioneer发布了新的文献求助10
23秒前
Dado发布了新的文献求助10
24秒前
朴素的萝卜关注了科研通微信公众号
24秒前
24秒前
hou发布了新的文献求助10
24秒前
24秒前
25秒前
何雨航完成签到,获得积分10
25秒前
25秒前
25秒前
幽默尔蓝发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
26秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500750
求助须知:如何正确求助?哪些是违规求助? 4597260
关于积分的说明 14458077
捐赠科研通 4530495
什么是DOI,文献DOI怎么找? 2482801
邀请新用户注册赠送积分活动 1466554
关于科研通互助平台的介绍 1439203