Interactive MD-DFT Model to Predict the Multi-Component Electrolyte Reduction within the Electrical Double Layer

电解质 分子动力学 化学 密度泛函理论 化学物理 还原(数学) 电极 计算化学 物理化学 几何学 数学
作者
Qisheng Wu,Yue Qi
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (3): 171-171
标识
DOI:10.1149/ma2022-023171mtgabs
摘要

A typical liquid electrolyte for lithium (Li)-ion and Li-metal batteries is a liquid mixture with salt, solvent, and additives. The reduction products of the electrolytes form the solid-electrolyte interphase (SEI) layer, whose composition, heterogeneity and thickness largely determine the Li plating and stripping processes and thus the cycling performance. It is highly desirable to obtain atomistic insights into the reduction reactions of the electrolytes to help predict and control the formation of the SEI layer. The reduction reactions of the liquid electrolyte occur near the charged electrode surface within the electric double layer (EDL). The electrolyte structures within EDL must change under an electric field, which impacts the electrolyte reduction and SEI formation. This has been rarely considered in previous theoretical investigations of the reduction potentials and reduction products. In this work, we have developed an interactive model combining molecular dynamics (MD) simulations and density functional theory (DFT) calculations to predict the multi-component electrolyte reduction within the EDL.[1] First, MD simulations, which can deal with thousands of atoms and even more, are used to capture the dynamics and statistics of the EDL structures. Then DFT calculations are used to compute the reduction products and corresponding reduction potentials of the representative clusters in the EDL. Finally, a formulation was proposed to calculate averaged reduction potential based on DFT-calculated reduction potentials of all the possible Li + -coordinated structures and their distribution probabilities obtained through MD analyses. We have applied this new interactive MD-DFT model to two types of essential multi-component electrolytes, the carbonate-based electrolyte (LiPF 6 @EC:EMC) and the ether-based electrolyte (LITFSI@DOL:DME). We find in both electrolytes the Li + ions within the EDL tend to have less coordination with other electrolyte species (salt anion, solvent and additive) compared to those in the bulk electrolyte. For LiPF 6 @EC:EMC, we reveal that FEC can enter into the EDL region and is favorable to be reduced, which helps form the F-containing SEI component (e.g., LiF). In addition, we have studied the effects of the FEC additive on LiTFSI@DOL:DME at various temperatures. We find that, at -40 °C, the number of F atoms that come near the electrode is largely increased after adding FEC, while no big change is observed at 20 °C. This explains that adding FEC is more effective in forming stable F-containing SEI and in promoting cycling performance at low temperatures.[2] Our simulations have also explained why ether based electrolyte works better than carbonate base electrolyte for Li metal anode. Reference: [1] Qisheng Wu,Yue Qi. Manuscript under preparation , 2022. [2] Akila C. Thenuwara, et al. ACS Energy Lett . 2020, 5, 2411−2420

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alivelean发布了新的文献求助10
2秒前
3秒前
搞怪故事发布了新的文献求助10
5秒前
别让我误会完成签到 ,获得积分10
5秒前
ding应助霸气的梦露采纳,获得10
8秒前
南方周末发布了新的文献求助10
9秒前
Tohka完成签到 ,获得积分10
10秒前
Goblin完成签到 ,获得积分10
10秒前
11秒前
Qu_Yun发布了新的文献求助10
13秒前
www完成签到 ,获得积分10
13秒前
花生完成签到 ,获得积分10
14秒前
Cao完成签到 ,获得积分10
16秒前
酷炫的毛巾应助雪宝宝采纳,获得10
16秒前
17秒前
19秒前
MOMO完成签到,获得积分10
19秒前
李善聪发布了新的文献求助20
20秒前
李健的小迷弟应助Alivelean采纳,获得10
20秒前
20秒前
CHENXIN532完成签到,获得积分10
20秒前
强风吹拂完成签到,获得积分10
21秒前
小满胜万全完成签到,获得积分10
21秒前
max完成签到,获得积分10
22秒前
tigger完成签到 ,获得积分10
22秒前
22秒前
23秒前
CHENXIN532发布了新的文献求助10
24秒前
25秒前
xiao_J发布了新的文献求助30
27秒前
立稳flag关注了科研通微信公众号
29秒前
ykxa完成签到,获得积分20
30秒前
33秒前
33秒前
明天好完成签到,获得积分10
33秒前
烟花应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
pluto应助科研通管家采纳,获得20
33秒前
852应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315