已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-level thresholding segmentation for pathological images: Optimal performance design of a new modified differential evolution

分割 阈值 计算机科学 水准点(测量) 人工智能 差异进化 计算机视觉 模式识别(心理学) 图像分割 图像(数学) 大地测量学 地理
作者
Lili Ren,Dong Zhao,Xuehua Zhao,Weibin Chen,Lingzhi Li,TaiSong Wu,Guoxi Liang,Zhennao Cai,Suling Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105910-105910 被引量:40
标识
DOI:10.1016/j.compbiomed.2022.105910
摘要

The effective analytical processing of pathological images is crucial in promoting the development of medical diagnostics. Based on this matter, in this research, a multi-level thresholding segmentation (MLTS) method based on modified different evolution (MDE) is proposed. The MDE is the primary benefit offered by the suggested MLTS technique, which is a novel proposed evolutionary algorithm in this article with significant convergence accuracy and the capability to leap out of the local optimum (LO). This optimizer came into being mostly as a result of the incorporation of the movement mechanisms of white holes, black holes, and wormholes into various evolutions. Thus, the developed MLTS approach may provide high-quality segmentation results and is less susceptible to segmentation process stagnation. To validate the efficacy of the presented approaches, first, the performance of MDE is validated using 30 benchmark functions, and then the proposed segmentation method is empirically compared with other comparable methods using standard pictures. On the basis of breast cancer and skin cancer pathology images, the developed segmentation method is compared to other competing methods and experimentally validated in further detail. By analyzing experimental data, the key compensations of MDE are proven, and it is experimentally shown that the unique MDE-based MLTS approach can achieve good performance in terms of many performance assessment indices. Consequently, the proposed method may offer an efficient segmentation procedure for pathological medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yyr完成签到 ,获得积分10
2秒前
3秒前
诚心凝蝶完成签到,获得积分10
5秒前
仁爱觅风完成签到 ,获得积分10
6秒前
7秒前
Fei完成签到,获得积分10
7秒前
淡定从霜发布了新的文献求助10
7秒前
852发布了新的文献求助20
8秒前
8秒前
13秒前
adorable发布了新的文献求助10
13秒前
14秒前
我爱小juju发布了新的文献求助10
15秒前
猪猪hero应助暴富暴富采纳,获得10
15秒前
沐小蕾完成签到 ,获得积分10
16秒前
17秒前
吃瓜完成签到,获得积分10
17秒前
高贵梦秋发布了新的文献求助10
18秒前
胡房晓发布了新的文献求助10
18秒前
lanxinyue应助意昂采纳,获得10
19秒前
眯眯眼的雪莲完成签到 ,获得积分10
21秒前
开心果子发布了新的文献求助10
21秒前
圈圈发布了新的文献求助10
22秒前
23秒前
我爱小juju完成签到,获得积分10
24秒前
科研通AI5应助pzhxsy采纳,获得10
25秒前
科目三应助adorable采纳,获得10
26秒前
结实电源完成签到 ,获得积分10
26秒前
ZO发布了新的文献求助30
27秒前
keyanlaosiji发布了新的文献求助10
28秒前
首席医官完成签到,获得积分10
29秒前
30秒前
科研通AI5应助xtt采纳,获得10
34秒前
圈圈完成签到,获得积分10
34秒前
37秒前
Orange应助开心果子采纳,获得30
44秒前
FashionBoy应助小太阳采纳,获得10
45秒前
47秒前
天天快乐应助科研通管家采纳,获得10
48秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807915
求助须知:如何正确求助?哪些是违规求助? 3352552
关于积分的说明 10359467
捐赠科研通 3068570
什么是DOI,文献DOI怎么找? 1685034
邀请新用户注册赠送积分活动 810286
科研通“疑难数据库(出版商)”最低求助积分说明 765999