Automatic detection of actual water depth of urban floods from social media images

洪水(心理学) 众包 生计 航程(航空) 测距 社会化媒体 最小边界框 计算机科学 计算机视觉 人工智能 地理 图像(数学) 工程类 万维网 心理学 电信 考古 航空航天工程 心理治疗师 农业
作者
Jingru Li,Ruying Cai,Yi Tan,Haijun Zhou,Abdul-Manan Sadick,Wenchi Shou,Xiaoling Wang
出处
期刊:Measurement [Elsevier BV]
卷期号:216: 112891-112891 被引量:15
标识
DOI:10.1016/j.measurement.2023.112891
摘要

Urban flooding disasters are the most frequent natural disasters in cities, which broadly affects people's livelihood. Prompt emergency response is the key to alleviating such impact, however, that would rely on the timely mapping of flooding according to waterlogging severity. Compared with traditional approaches, crowdsourcing images from social media has emerged as a more efficient way to obtain this type of information. Therefore, this paper aims to explore the approach based on computer vision technology to automatically extract water depth from social media images, which can be utilized to construct flooding maps during urban flooding. Firstly, the images related to urban flooding were retrieved from social media and then filtered, leaving only images containing people. Secondly, a specific objective detection model based on YOLO was trained to detect the human body parts which are divided into crus, thigh, shoulder, and head from bottom to top. The experiment shows that the mAP of the trained human body parts detection model in the test dataset is 0.967. Afterward, an algorithm for extracting water depth was proposed based on the ratio of bounding boxes of detected body parts in images to the actual length of human body parts. Next, these models were verified by comparing them with manually estimated depth range and manually measured depth. The experiment shows that the accuracy of water depth range is 0.959 and the mean absolute error of the actual depth detection of water is 10.22 cm in the measurement dataset. Finally, the proposed models were applied to map the 2016 flooding that occurred in Wuhan as an illustrative case. This approach is helpful to broaden the source of flooding severity information and improve the efficiency of flood mapping in urban flood emergency management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyy发布了新的文献求助10
1秒前
3秒前
林林林林完成签到 ,获得积分10
4秒前
5秒前
Aran_Zhang应助聆琳采纳,获得20
6秒前
弓長玉王令完成签到,获得积分10
7秒前
10秒前
10秒前
GGbomd发布了新的文献求助10
13秒前
15秒前
15秒前
阿尼完成签到,获得积分10
17秒前
林林总总完成签到,获得积分10
18秒前
SafeDriving关注了科研通微信公众号
18秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
25秒前
那时的苹果完成签到,获得积分10
26秒前
31秒前
32秒前
guaishou完成签到,获得积分10
34秒前
35秒前
科研通AI5应助QQ采纳,获得30
36秒前
37秒前
40秒前
41秒前
zx完成签到,获得积分10
42秒前
小橙子完成签到 ,获得积分10
42秒前
iiiau完成签到,获得积分10
45秒前
45秒前
46秒前
46秒前
CTCG完成签到 ,获得积分10
50秒前
无语的水云完成签到,获得积分10
51秒前
52秒前
量子星尘发布了新的文献求助10
52秒前
敬敬完成签到,获得积分10
52秒前
qiongqiong完成签到,获得积分10
55秒前
科研通AI5应助深情的迎海采纳,获得10
55秒前
56秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864393
求助须知:如何正确求助?哪些是违规求助? 3406788
关于积分的说明 10651271
捐赠科研通 3130707
什么是DOI,文献DOI怎么找? 1726548
邀请新用户注册赠送积分活动 831812
科研通“疑难数据库(出版商)”最低求助积分说明 780020