Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass

木糖 代谢工程 木质纤维素生物量 乳酸 水解物 化学 食品科学 生物化学 水解 生物 发酵 细菌 遗传学
作者
Bo-Hyun Choi,Albert Tafur Rangel,Eduard J. Kerkhoven,Yvonne Nygård
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:84: 23-33 被引量:3
标识
DOI:10.1016/j.ymben.2024.05.003
摘要

Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid /g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wangran完成签到 ,获得积分10
1秒前
3秒前
5秒前
ww完成签到,获得积分10
6秒前
刘星完成签到 ,获得积分10
7秒前
Yolen LI完成签到,获得积分10
7秒前
moon发布了新的文献求助10
8秒前
8秒前
少华完成签到,获得积分10
10秒前
皮蛋发布了新的文献求助10
10秒前
12秒前
顾矜应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
今后应助科研通管家采纳,获得30
14秒前
15秒前
vision发布了新的文献求助10
15秒前
科研狗完成签到,获得积分10
16秒前
共享精神应助直立行走采纳,获得10
16秒前
Genius完成签到,获得积分10
17秒前
qian4完成签到 ,获得积分10
18秒前
20秒前
根根发布了新的文献求助10
23秒前
一棵树完成签到,获得积分10
24秒前
知行完成签到,获得积分10
24秒前
11完成签到 ,获得积分10
24秒前
酷波er应助调皮寒凝采纳,获得10
24秒前
海王類完成签到,获得积分10
25秒前
30秒前
达达发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304