已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

92 The added value of deep learning to submaximal exercise electrocardiogram for the 10-year prediction of major adverse cardiovascular and cerebrovascular events

医学 心脏病学 内科学 危险系数 人口 比例危险模型 心电图 生命银行 物理疗法 置信区间 生物信息学 环境卫生 生物
作者
Adam Sturge,Stefan van Duijvenboden,Charlie Harper,Aiden Doherty,Barbara Casadei
标识
DOI:10.1136/heartjnl-2024-bcs.92
摘要

Introduction

The added value of exercise ECG data to traditional risk factors in predicting cardiovascular events remains unclear. Deep learning of ECG signals has demonstrated state-of-the-art performance in detecting subtle abnormalities indicative of cardiovascular disease. We investigated whether deep learning analysis of exercise ECGs could improve the prediction of major cardiovascular and cerebrovascular events (MACCE) with respect to established risk models in a large population-based cohort.

Methods

We obtained ECG recordings from 41,076 UK Biobank participants without cardiovascular disease (CVD) who underwent a submaximal exercise ECG test. We obtained ECG recordings from 41,076 UK Biobank participants without cardiovascular disease (CVD) who underwent a submaximal exercise ECG test. We created two deep neural network ECG risk scores: one derived from conventional ECG parameters, measured at rest, peak exercise and late-stage recovery, and another based on the complete ECG (Q-ECG). We assessed the added value of conventional ECG parameters and Q-ECG risk scores to the UK's current prediction algorithm (QRISK3). We estimate the association between ECG parameters and MACCE, using Cox Proportional hazard models, following adjustment for traditional risk factors. All models were internally validated via 5-fold cross-validation and 1000 bootstrap iterations. Predictive performance was evaluated using Harrel's C-index, Net Reclassification Index (NRI) and net benefit.

Findings

Incident MACCE was reported in 4,082 (9.9%) individuals in the study population and 3,463(9.7%) individuals with valid ECG parameters over a median follow-up period of 12.5 years. We found combined conventional ECG and Q-ECG scores were independently associated with MACCE, following adjustment for multiple testing: adjusted hazard ratio [HZ] = 1.76 (95% CI:1.63–1.91); HZ = 1.14 (95% CI:1.10–1.18), respectively, per standard deviation increase. Both conventional ECG parameters and Q-ECG were predictive of MACCE, independent of clinical risk factors, C-index = 0.64 (95%CI 0.63–0.65); net benefit = 0.09(95% CI 0.07 - 0.11) and C-index = 0.56 (95% CI 0.55–0.57); net benefit = 0.07(95% CI 0.05 - 0.09). ECG measurement's modestly improved model discrimination over the baseline QRISK3 risk score when combined with QRISK3 risk factors for conventional markers and Q-ECG score, respectively; ΔC-index 0.03 (95% CI: 0.02 – 0.04) and ΔC-index 0.03 (95% CI: 0.02 – 0.03); However, we observed no significant improvements in classification at the current recommended threshold of 10%.

Conclusion

In individuals without a history of prior cardiovascular disease, ECG measures independently predict the risk of MACCE. When combined with QRISK3, neural-network-derived ECG risk scores marginally improve cardiovascular risk prediction over QRISK3.

Conflict of Interest

NA
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山茶花白玫瑰完成签到 ,获得积分10
1秒前
1秒前
2秒前
yanglinhai完成签到 ,获得积分10
3秒前
luxiaoyu发布了新的文献求助10
4秒前
慕青应助精明的尔蓝采纳,获得10
4秒前
5秒前
6秒前
muyu发布了新的文献求助10
9秒前
cryjslong完成签到,获得积分10
14秒前
俊逸沛菡完成签到 ,获得积分10
15秒前
15秒前
15秒前
17秒前
18秒前
鳄鱼不做饿梦完成签到,获得积分10
18秒前
Cissy发布了新的文献求助10
19秒前
小白加油完成签到 ,获得积分10
21秒前
LUCKY发布了新的文献求助10
22秒前
Cpp完成签到 ,获得积分10
23秒前
Ammr完成签到 ,获得积分10
25秒前
26秒前
27秒前
28秒前
30秒前
李健的粉丝团团长应助muyu采纳,获得10
30秒前
小廷发布了新的文献求助10
31秒前
ninioo发布了新的文献求助10
32秒前
ttt发布了新的文献求助10
33秒前
35秒前
洵洵发布了新的文献求助10
35秒前
天尽头发布了新的文献求助10
36秒前
小蘑菇应助帅气的夏天采纳,获得10
37秒前
Akim应助123123123采纳,获得30
37秒前
酷波er应助luxiaoyu采纳,获得10
37秒前
Cissy完成签到,获得积分10
37秒前
乐乐应助ninioo采纳,获得10
40秒前
45秒前
46秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4552510
求助须知:如何正确求助?哪些是违规求助? 3981779
关于积分的说明 12327604
捐赠科研通 3651430
什么是DOI,文献DOI怎么找? 2011147
邀请新用户注册赠送积分活动 1046210
科研通“疑难数据库(出版商)”最低求助积分说明 934787