Methods and theory for analyzing intensive longitudinal data in family research

纵向数据 心理学 计算机科学 数据挖掘
作者
Jennifer S. Barber,Tim Futing Liao
出处
期刊:Journal of Marriage and Family [Wiley]
卷期号:86 (5): 1557-1585 被引量:2
标识
DOI:10.1111/jomf.12993
摘要

Abstract Although family scholars have long relied on longitudinal data, electronic methods of data collection like web‐ and app‐based surveys have greatly increased the amount of data with many repeated measures at short intervals, sometimes called intensive longitudinal data. The authors provide a conceptual overview of this type of data, paying particular attention to the appropriate frequency for the intervals, and discuss some of the unique contributions to Life Course Theory that can be generated with such data. They illustrate two analytic techniques that especially benefit from an intensive longitudinal design—sequence analysis and between‐within regression—by applying these methods to intensive longitudinal data from the Relationship Dynamics and Social Life Study that represent a “micro life course” of pregnancy risk (partnering, pregnancy desire, sex, and contraception) during the transition to adulthood. Their sequence analysis shows that singlehood, hormonal contraception, or partnered abstinence dominated most young women's micro‐life courses. Black/African‐American young women's micro life courses were similarly dominated by singlehood but were even more frequently dominated by partnered abstinence than their non‐Black/African‐American peers'. However, Black/African‐American women's micro life courses were less stable, potentially explaining their higher undesired pregnancy rates. A between‐within regression model shows that Black/African‐American coital contraceptors were less likely than their non‐Black/African‐American peers to use withdrawal (rather than condoms). They conclude by suggesting some potential ways that intensive longitudinal data capturing micro‐life courses can contribute to important outstanding research questions in family research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单山槐发布了新的文献求助10
1秒前
lc发布了新的文献求助10
1秒前
盛夏吹过晚风完成签到,获得积分20
1秒前
2秒前
可爱的函函应助蔡军采纳,获得10
2秒前
下雨天爱吃鱼完成签到,获得积分10
3秒前
研友_nEWrN8完成签到,获得积分10
3秒前
丘比特应助害羞的安萱采纳,获得10
4秒前
4秒前
科研通AI5应助直率心锁采纳,获得10
4秒前
马超放烟花完成签到 ,获得积分10
4秒前
yuhui完成签到,获得积分10
5秒前
5秒前
minmin完成签到,获得积分10
5秒前
筱筱完成签到,获得积分10
8秒前
8秒前
8秒前
dhts应助罗先斗采纳,获得10
9秒前
10秒前
斯文败类应助静鸭采纳,获得10
10秒前
陈明明发布了新的文献求助10
11秒前
11秒前
害羞的安萱完成签到,获得积分20
11秒前
呜呼啦呼完成签到 ,获得积分10
12秒前
干净玉米发布了新的文献求助10
12秒前
12秒前
April完成签到,获得积分10
12秒前
12秒前
简单山槐完成签到,获得积分10
13秒前
科研通AI5应助尔东采纳,获得10
13秒前
13秒前
HEAUBOOK完成签到,获得积分0
14秒前
15秒前
diu完成签到,获得积分10
15秒前
lilia完成签到,获得积分10
15秒前
葳蕤完成签到,获得积分10
15秒前
于大本事完成签到 ,获得积分10
16秒前
16秒前
蔡军发布了新的文献求助10
16秒前
DYYDYY完成签到,获得积分10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834218
求助须知:如何正确求助?哪些是违规求助? 3376802
关于积分的说明 10495184
捐赠科研通 3096251
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820288
科研通“疑难数据库(出版商)”最低求助积分说明 771926