Study on Icing Prediction for High-Speed Railway Catenary Oriented to Numerical Model and Deep Learning

悬链线 结冰 风速 环境科学 气象学 模拟 计算机科学 海洋工程 工程类 结构工程 物理
作者
Zheng Li,Guangning Wu,Guizao Huang,Yujun Guo,Hongyu Zhu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:11 (1): 1189-1200 被引量:5
标识
DOI:10.1109/tte.2024.3401209
摘要

The pantograph-catenary system, serving as the 'throat' for the energy supply of high-speed railways, inevitably experience current degradation caused by ice accumulation on the catenary when high-speed trains pass through areas with high relative humidity, low temperature, and high wind speeds. To explore the impact of the complex service environment on the growth process of catenary icing, this paper, based on the study of the mechanism of catenary icing, proposes an ice prediction method for catenary icing oriented to numerical model and deep learning. Firstly, based on the calculation of key parameters such as capture rate, freezing coefficient, and collision coefficient, a numerical model for catenary icing under time-varying meteorological conditions is developed. Secondly, study the impact of four factors, including wind speed, temperature, liquid water content (LWC), and median volume diameter (MVD), on the evolution of catenary icing. Finally, by integrating the convolutional neural network-long short-term memory (CNN-LSTM), a prediction model for catenary icing is established. The study addressed challenges such as unclear mechanisms of catenary icing, difficulties in detecting icing states, and insufficient sample data. It laid a theoretical foundation for icing forecasting and warning, selection of de-icing strategies, and research on the dancing of catenary icing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
二十完成签到 ,获得积分10
3秒前
wangyaofeng完成签到,获得积分10
3秒前
void科学家完成签到,获得积分10
3秒前
6秒前
7秒前
njxndnajoasndlas完成签到,获得积分20
8秒前
9秒前
snowwwwwwwwfox完成签到,获得积分10
9秒前
皇甫飞扬完成签到,获得积分10
9秒前
11秒前
登山人发布了新的文献求助10
12秒前
皇甫飞扬发布了新的文献求助10
12秒前
enshun发布了新的文献求助10
12秒前
13秒前
小小发布了新的文献求助30
14秒前
小蘑菇应助ll200207采纳,获得10
17秒前
IleraYoung发布了新的文献求助10
19秒前
21秒前
思源应助酚酞v采纳,获得10
25秒前
吴兰田完成签到,获得积分10
25秒前
丰富的以筠完成签到,获得积分10
26秒前
呆萌的悲发布了新的文献求助30
27秒前
顾矜应助Sea_U采纳,获得10
29秒前
ywzwszl发布了新的文献求助10
31秒前
aprilvanilla完成签到,获得积分10
31秒前
罐装冰块完成签到,获得积分10
31秒前
小小完成签到,获得积分10
33秒前
勇者先享受生活完成签到 ,获得积分10
35秒前
35秒前
cmuz发布了新的文献求助10
40秒前
科研通AI5应助呆萌的悲采纳,获得80
41秒前
都暻秀女朋友完成签到,获得积分10
41秒前
44秒前
英姑应助赫连紫采纳,获得10
45秒前
我是老大应助BareBear采纳,获得10
47秒前
48秒前
Xiao完成签到,获得积分10
48秒前
49秒前
健壮的书桃关注了科研通微信公众号
50秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742