Training Compact CNNs for Image Classification Using Dynamic-Coded Filter Fusion

计算机科学 滤波器(信号处理) 人工智能 上下文图像分类 模式识别(心理学) 算法 复合图像滤波器 数学 图像(数学) 计算机视觉
作者
Mingbao Lin,Bohong Chen,Fei Chao,Rongrong Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (8): 10478-10487 被引量:13
标识
DOI:10.1109/tpami.2023.3259402
摘要

The mainstream approach for filter pruning is usually either to force a hard-coded importance estimation upon a computation-heavy pretrained model to select "important" filters, or to impose a hyperparameter-sensitive sparse constraint on the loss objective to regularize the network training. In this paper, we present a novel filter pruning method, dubbed dynamic-coded filter fusion (DCFF), to derive compact CNNs in a computation-economical and regularization-free manner for efficient image classification. Each filter in our DCFF is first given an inter-similarity distribution with a temperature parameter as a filter proxy, on top of which, a fresh Kullback-Leibler divergence based dynamic-coded criterion is proposed to evaluate the filter importance. In contrast to simply keeping high-score filters in other methods, we propose the concept of filter fusion, i.e., the weighted averages using the assigned proxies, as our preserved filters. We obtain a one-hot inter-similarity distribution as the temperature parameter approaches infinity. Thus, the relative importance of each filter can vary along with the training of the compact CNN, leading to dynamically changeable fused filters without both the dependency on the pretrained model and the introduction of sparse constraints. Extensive experiments on classification benchmarks demonstrate the superiority of our DCFF over the compared counterparts. For example, our DCFF derives a compact VGGNet-16 with only 72.77M FLOPs and 1.06M parameters while reaching top-1 accuracy of 93.47% on CIFAR-10. A compact ResNet-50 is obtained with 63.8% FLOPs and 58.6% parameter reductions, retaining 75.60% top-1 accuracy on ILSVRC-2012. Our code, narrower models and training logs are available at https://github.com/lmbxmu/DCFF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
丘比特应助麻瓜X采纳,获得10
2秒前
CipherSage应助星黛露采纳,获得10
3秒前
4秒前
4秒前
哔哔鱼发布了新的文献求助10
4秒前
任性的元冬完成签到,获得积分20
4秒前
aura完成签到 ,获得积分10
5秒前
小樊同学发布了新的文献求助10
6秒前
7秒前
丰富的小甜瓜完成签到,获得积分10
7秒前
8秒前
icecream发布了新的文献求助10
9秒前
英俊的铭应助任性的元冬采纳,获得10
10秒前
科研通AI5应助初初见你采纳,获得10
11秒前
木木三发布了新的文献求助10
12秒前
雄i完成签到,获得积分10
12秒前
ShiRz发布了新的文献求助10
13秒前
14秒前
很傻的狗完成签到,获得积分10
15秒前
ABC完成签到,获得积分10
17秒前
苹果巧蕊完成签到 ,获得积分10
19秒前
英俊的铭应助闫晓丽采纳,获得10
19秒前
余额发布了新的文献求助10
19秒前
icecream完成签到,获得积分10
19秒前
知来者完成签到,获得积分10
20秒前
鸠摩智完成签到,获得积分10
22秒前
朽木完成签到 ,获得积分10
22秒前
24秒前
25秒前
暮寻屿苗完成签到 ,获得积分10
25秒前
科研通AI5应助哔哔鱼采纳,获得10
27秒前
Akim应助NXK采纳,获得10
28秒前
沉默哈密瓜完成签到 ,获得积分10
29秒前
31秒前
SciGPT应助Minguk采纳,获得10
32秒前
37秒前
Anjianfubai完成签到,获得积分10
39秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959