Advancements in CHAMPS for Multi-Layer Ice Accretion on Aircraft

表面粗糙度 表面光洁度 结冰 几何学 曲面(拓扑) 机械 地质学 计算机科学 气象学 物理 机械工程 数学 工程类 量子力学
作者
Maxime Blanchet,Simon Bourgault-Côté,Éric Laurendeau
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-1474
摘要

<div class="section abstract"><div class="htmlview paragraph">The numerical simulation of ice accretion on aircraft is a complex problem that is difficult to simulate robustly, especially in 3D. The process, which combines multiple different solvers, is prone to fail whenever the geometry deformation due to ice is too complex. Thus, the more ice layers, the more fragile is the simulation. This paper aims at studying, and possibly reducing, the dependency on the number of layers by considering i) the impact of the deforming surface on the impingement and ii) a local roughness modeling that can better position the ice horns.</div><div class="htmlview paragraph">The method called Impact Angle Correction (IAC) method in the literature is implemented and consists in setting in an additional loop the components solved on the surface, namely the thermodynamic exchanges and the geometry update, to consider the change in the surface normal vectors. For each of these ice sub-layers, the impingement water mass is recomputed by considering all droplet bins after each deformation of the surface. Two-dimensional results show that this method can reduce the dependency on the number of full ice layers.</div><div class="htmlview paragraph">A local roughness model is also implemented to impact the convective heat transfer simulation on the surface depending on local icing data. This local roughness could allow to better capture the ice horn locations, angle and height. Two-dimensional results presented in this work show in particular that lower horns are better captured when using a local roughness model. Three-dimensional glaze results show the effect of the coupling of both models for single-layer ice accretion, which can help capturing small-scale ice features.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
修仙中应助zyc采纳,获得10
刚刚
1秒前
我是老大应助lihe198900采纳,获得10
1秒前
消炎药发布了新的文献求助10
2秒前
东木完成签到,获得积分10
2秒前
2秒前
promise发布了新的文献求助10
3秒前
受伤金鑫完成签到,获得积分10
3秒前
3秒前
Jasper应助自信132采纳,获得10
3秒前
Lucas应助小小面包采纳,获得10
4秒前
4秒前
JG发布了新的文献求助10
5秒前
5秒前
5秒前
ZYP完成签到,获得积分10
6秒前
科目三应助年轻绮波采纳,获得10
6秒前
科研通AI2S应助bobo采纳,获得10
7秒前
脑洞疼应助adx采纳,获得10
7秒前
SYLH应助zone采纳,获得10
7秒前
研友_VZG7GZ应助四方采纳,获得30
7秒前
Orange应助风中的向卉采纳,获得10
7秒前
wdw2501发布了新的文献求助10
7秒前
7秒前
8秒前
omitoo完成签到,获得积分10
8秒前
张思铭完成签到,获得积分20
9秒前
MYMELODY完成签到,获得积分10
9秒前
大个应助Ricky采纳,获得10
9秒前
9秒前
Ann发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
zhaizhai完成签到,获得积分10
10秒前
恐龙完成签到 ,获得积分10
10秒前
咸鱼发布了新的文献求助50
10秒前
12秒前
感动芷卉发布了新的文献求助10
12秒前
在水一方应助王敬顺采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139497
求助须知:如何正确求助?哪些是违规求助? 3676545
关于积分的说明 11621066
捐赠科研通 3370614
什么是DOI,文献DOI怎么找? 1851454
邀请新用户注册赠送积分活动 914603
科研通“疑难数据库(出版商)”最低求助积分说明 829377