清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GML-YOLO: A lightweight infrared small target detection algorithm

红外线的 计算机科学 算法 光学 物理
作者
Lin Jiang,Yixuan Shen,mei Da,Jue Hu,Zhijian Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/adf2d0
摘要

Abstract Infrared imaging technology captures the thermal radiation characteristics of targets, enabling object monitoring and filtering redundant road information in complex road scenarios. This paper proposes a lightweight infrared small object detection algorithm GML-YOLO to address issues such as low accuracy, large parameter volume, dependency on high-performance GPU resources, and slow detection speed in infrared pedestrian and vehicle object detection models. Firstly, we designed a lightweight backbone network, G_HGNet, to improve feature extraction efficiency, enabling accurate and real-time feature extraction. Secondly, we incorporated adaptive downsampling and attention mechanisms in the network fusion part, replacing the simple concatenation used in traditional detectors. This design effectively integrates shallow and deep information. Furthermore, the CSP_MLCA module was developed, representing an enhancement of the C2f module through the integration of a hybrid attention mechanism, thereby enhancing the model's detection performance. Subsequently, the WIOUv3 loss function was employed to enhance model convergence speed and reduce losses, thereby increasing model detection accuracy. Finally, comparative experiments were conducted on our dataset as well as the public FLIR and Pascal VOC datasets. The results demonstrate that GML-YOLO achieves a mean Average Precision (mAP) of 89.7% on our dataset (ISTD), 86.5% on the FLIR dataset, and 82.0% on the Pascal VOC dataset. Additionally, computational load and parameter volume were reduced by 20% and 27%, respectively. The improved GML-YOLO algorithm outperforms YOLOv3, YOLOv5, YOLOv6, YOLOv8s, and YOLOv8n, validating the feasibility of our proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
29秒前
33秒前
薛家泰完成签到 ,获得积分10
41秒前
xue完成签到 ,获得积分10
41秒前
1分钟前
1分钟前
CHEN完成签到 ,获得积分10
1分钟前
2分钟前
CHANG完成签到 ,获得积分10
2分钟前
2分钟前
秋半雪发布了新的文献求助10
2分钟前
2分钟前
2分钟前
糊涂的青烟完成签到 ,获得积分10
2分钟前
小贾爱喝冰美式完成签到 ,获得积分10
2分钟前
殷勤的紫槐完成签到,获得积分0
3分钟前
3分钟前
bkagyin应助科研通管家采纳,获得30
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
早茶的馄饨完成签到,获得积分20
3分钟前
丘比特应助早茶的馄饨采纳,获得30
3分钟前
3分钟前
3分钟前
紫焰完成签到 ,获得积分10
3分钟前
4分钟前
鲤鱼山人完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
orixero应助天玄采纳,获得10
5分钟前
思源应助天玄采纳,获得10
5分钟前
爆米花应助天玄采纳,获得10
5分钟前
科研通AI6应助天玄采纳,获得10
5分钟前
科研通AI6应助秋半雪采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482527
求助须知:如何正确求助?哪些是违规求助? 4583310
关于积分的说明 14389170
捐赠科研通 4512454
什么是DOI,文献DOI怎么找? 2472968
邀请新用户注册赠送积分活动 1459145
关于科研通互助平台的介绍 1432646