Solving Multiobjective Feature Selection Problems in Classification via Problem Reformulation and Duplication Handling

特征选择 特征(语言学) 人工智能 早熟收敛 计算机科学 人口 特征向量 约束(计算机辅助设计) 趋同(经济学) 最优化问题 模式识别(心理学) 进化算法 多目标优化 机器学习 选择(遗传算法) 数据挖掘 数学优化 数学 粒子群优化 经济 人口学 社会学 哲学 经济增长 语言学 几何学
作者
Ruwang Jiao,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 846-860 被引量:25
标识
DOI:10.1109/tevc.2022.3215745
摘要

Reducing the number of selected features and improving the classification performance are two major objectives in feature selection, which can be viewed as a multi-objective optimization problem. Multi-objective feature selection in classification has its unique characteristics, such as it has a strong preference for the classification performance over the number of selected features. Besides, solution duplication often appears in both the search and the objective spaces, which degenerates the diversity and results in the premature convergence of the population. To deal with the above issues, in this paper, during the evolutionary training process, a multi-objective feature selection problem is reformulated and solved as a constrained multi-objective optimization problem, which adds a constraint on the classification performance for each solution (e.g., feature subset) according to the distribution of nondominated solutions, with the aim of selecting promising feature subsets that contain more informative and strongly relevant features, which are beneficial to improve the classification performance. Furthermore, based on the distribution of feature subsets in the objective space and their similarity in the search space, a duplication analysis and handling method is proposed to enhance the diversity of the population. Experimental results demonstrate that the proposed method outperforms six state-of-the-art algorithms and is computationally efficient on 18 classification datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
谭小仙儿完成签到 ,获得积分10
2秒前
科研通AI5应助杨少博采纳,获得30
2秒前
桃子完成签到 ,获得积分10
3秒前
猛男发布了新的文献求助10
4秒前
6秒前
陈豆豆完成签到 ,获得积分10
7秒前
7秒前
丫头完成签到 ,获得积分10
9秒前
凌风完成签到,获得积分10
10秒前
嗯嗯完成签到,获得积分10
12秒前
yyou发布了新的文献求助10
12秒前
猛男完成签到,获得积分10
13秒前
13秒前
qiao应助张姚采纳,获得10
16秒前
wcy完成签到 ,获得积分10
17秒前
xubcay完成签到,获得积分10
17秒前
luochen完成签到,获得积分10
18秒前
传奇3应助周周采纳,获得10
22秒前
23秒前
扒开皮皮发布了新的文献求助10
25秒前
科研通AI2S应助手抓饼啊采纳,获得10
25秒前
疯了半天完成签到,获得积分10
26秒前
26秒前
兴奋渊思完成签到 ,获得积分10
27秒前
杨少博发布了新的文献求助30
29秒前
CC发布了新的文献求助10
31秒前
畅快的念烟完成签到,获得积分10
32秒前
33秒前
miscell应助繁荣的又夏采纳,获得10
34秒前
深情安青应助谢富杰采纳,获得10
34秒前
周周发布了新的文献求助10
38秒前
传奇3应助CC采纳,获得10
38秒前
一枚研究僧完成签到,获得积分0
39秒前
Jasper应助科研通管家采纳,获得50
39秒前
在水一方应助科研通管家采纳,获得10
39秒前
隐形曼青应助科研通管家采纳,获得10
39秒前
40秒前
慕青应助科研通管家采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777790
求助须知:如何正确求助?哪些是违规求助? 3323297
关于积分的说明 10213693
捐赠科研通 3038552
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275