Prediction of Fading for Painted Cultural Relics Using the Optimized Gray Wolf Optimization-Long Short-Term Memory Model

灰色(单位) 期限(时间) 计算机科学 衰退 艺术 算法 物理 医学 天文 解码方法 放射科
作者
Zhen Liu,An-Ran Zhao,Siming Liu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (21): 9735-9735
标识
DOI:10.3390/app14219735
摘要

Cultural heritage digitization is of great significance for the protection, restoration, and rejuvenation of cultural relics. In particular, the investigation of fading mechanisms is essential for virtual restoration to accurately recreate the original appearance of artifacts and facilitate humanistic and historical research. For the purpose of investigating the color fading mechanism of pigments, we propose a color fading time series model using a combined long short-term memory recurrent neural network modified by the gray wolf optimization algorithm (GWOAD-LSTM). First, the general gray wolf algorithm was scaled up to two dimensions and combined with an LSTM model for optimal parameter search. Second, six pigments commonly used in painted artifacts were subjected to simulated aging experiments. Third, by applying the experimental data to different predictors, the results of the Back Propagation Neural Network (BPNN), Long Short-Term Memory (LSTM), Long Short-Term Memory on Gray Wolf Optimizer (GWO-LSTM), and GWOAD-LSTM models were compared. The results showed that our proposed GWOAD-LSTM model outperformed other models in terms of accuracy and generalization ability, especially in predicting hLC color attributes. Our study aimed to provide a new application tool for the restoration and rejuvenation of painted artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
潘善若发布了新的文献求助10
刚刚
2秒前
杨嘟嘟完成签到,获得积分10
2秒前
YangSY完成签到,获得积分10
3秒前
彭于晏应助潘善若采纳,获得30
5秒前
子伯完成签到,获得积分10
7秒前
Alfred发布了新的文献求助10
7秒前
JamesPei应助916采纳,获得10
9秒前
9秒前
搜集达人应助能干涵瑶采纳,获得10
9秒前
充电宝应助酷炫依白采纳,获得10
10秒前
kkkk完成签到,获得积分10
10秒前
自然的清涟完成签到 ,获得积分10
11秒前
11秒前
11秒前
14秒前
勤劳的晓镍完成签到 ,获得积分10
15秒前
史前巨怪发布了新的文献求助10
15秒前
科研小白完成签到 ,获得积分10
15秒前
16秒前
Leen发布了新的文献求助10
16秒前
mo发布了新的文献求助10
17秒前
18秒前
UU完成签到,获得积分10
19秒前
科研通AI5应助无限安蕾采纳,获得10
19秒前
20秒前
Alfred发布了新的文献求助10
21秒前
cc2713206完成签到,获得积分0
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
小白应助科研通管家采纳,获得20
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
22秒前
小白应助科研通管家采纳,获得20
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得30
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800680
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328247
捐赠科研通 3062514
什么是DOI,文献DOI怎么找? 1681009
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627