亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effective pre-stress identification in steel strand based on ultrasonic guided wave and 1-dimensional convolutional neural network

卷积神经网络 稳健性(进化) 支持向量机 时域 应力场 压力(语言学) 计算机科学 算法 模式识别(心理学) 人工智能 工程类 有限元法 计算机视觉 语言学 哲学 生物化学 化学 结构工程 基因
作者
Longguan Zhang,Junfeng Jia,Yu‐Lei Bai,Xiuli Du,Binli Guo,He Guo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241263955
摘要

The accurate assessment of the effective pre-stress in steel strands is a challenging task, and ultrasonic guided wave (UGW) technique has shown certain application prospects in this field. However, the existing UGW-based approaches require manual parameter extraction from signals in time domain or frequency domain, which is a cumbersome and time-consuming process, and pre-stress identification based on individual parameters may not be reasonable. This study proposes a framework for identifying effective pre-stress in steel strands based on UGW and one-dimensional convolutional neural network (1D-CNN), which does not require any parameter extraction operation and achieves high identification accuracy. The output features of various convolutional layers in 1D-CNN were downscaled and visualized, and the prediction results of 1D-CNN were compared with those of a support vector regression (SVR) model. Results show that with the deepening of the network, the correlation between output features of the convolutional layers and pre-stress values increases significantly, indicating that the 1D-CNN model is able to automatically extract features related to the variation of pre-stress. The pre-stress prediction accuracy using 1D-CNN is significantly higher than that using SVR, and the prediction error is within 3%. The proposed 1D-CNN model exhibits excellent noise-robustness, with the prediction error remaining within 10% even at the SNR level of −5 dB. Even after removing half of conditions in the training set, the proposed 1D-CNN model is still able to achieve accurate identification of effective pre-stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
liu发布了新的文献求助10
9秒前
WXKennyS发布了新的文献求助10
9秒前
俊逸吐司完成签到 ,获得积分10
20秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
震动的归尘完成签到 ,获得积分10
35秒前
40秒前
清爽书雪发布了新的文献求助10
47秒前
Z可完成签到,获得积分20
56秒前
清爽书雪完成签到,获得积分20
1分钟前
1分钟前
杨迪应助liu采纳,获得10
1分钟前
yuanpiao应助liu采纳,获得10
1分钟前
iveuplife完成签到,获得积分10
1分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
wlei完成签到,获得积分10
3分钟前
3分钟前
zs完成签到 ,获得积分10
3分钟前
iveuplife发布了新的文献求助10
3分钟前
4分钟前
wanci应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
LTJ完成签到,获得积分10
4分钟前
狸猫完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
Ashao完成签到 ,获得积分10
4分钟前
5分钟前
狸猫关注了科研通微信公众号
5分钟前
废物点昕完成签到,获得积分10
5分钟前
乐乐应助景胜杰采纳,获得10
5分钟前
5分钟前
废物点昕关注了科研通微信公众号
5分钟前
5分钟前
baiyeok发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4457410
求助须知:如何正确求助?哪些是违规求助? 3922258
关于积分的说明 12171277
捐赠科研通 3573365
什么是DOI,文献DOI怎么找? 1962898
邀请新用户注册赠送积分活动 1002103
科研通“疑难数据库(出版商)”最低求助积分说明 896827