Identity Disclosure and Anthropomorphism in Voice Chatbot Design: A Field Experiment

聊天机器人 身份(音乐) 领域(数学) 心理学 计算机科学 沟通 语言学 社会心理学 万维网 美学 艺术 哲学 数学 纯数学
作者
Yuqian Xu,Hongyan Dai,Wanfeng Yan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:10
标识
DOI:10.1287/mnsc.2022.03833
摘要

Fueled by the widespread adoption of algorithms and artificial intelligence, the use of chatbots has become increasingly popular in various business contexts. In this paper, we study how to effectively and appropriately use voice chatbots, particularly by leveraging the two design features identity disclosure and anthropomorphism, and evaluate their impact on the firm operational performance. In collaboration with a large truck-sharing platform, we conducted a field experiment that randomly assigned 11,000 truck drivers to receive outbound calls from the voice chatbot dispatcher of our focal platform. Our empirical results suggest that disclosing the identity of the chatbot at the beginning of the conversation negatively affects operational performance, leading to around 11% reduction in the response probability. However, humanizing the voice chatbot by adding our proposed anthropomorphism features (i.e., interjections and filler words) significantly improves response probability, conversation length, and the probability of order acceptance intention by over 5.6%, 24.9%, and 10.1%, respectively. Moreover, even when the chatbot’s identity is disclosed along with humanizing features, the operational outcomes still improve. This finding suggests that enhancing anthropomorphism may potentially counteract the negative effects of chatbot identity disclosure. Finally, we propose one plausible explanation for the performance improvement—the enhanced trust between humans and algorithms—and provide empirical evidence that drivers are more likely to disclose information to chatbot dispatchers with anthropomorphism features. Our proposed anthropomorphism improvement solutions are currently being implemented and utilized by our collaborator platform. This paper has been This paper was accepted by Felipe Caro for the Special Issue on the Human-Algorithm Connection. Funding: This study is supported by the National Natural Science Foundation of China [Grants 72172169 and 91646125], Program for Innovation Research at the Central University of Finance and Economic, and Shanghai Pujiang Program. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.03833 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘟嘟嘟cpu发布了新的文献求助10
1秒前
科研通AI2S应助蔡从安采纳,获得10
1秒前
坚强剑愁应助蔡从安采纳,获得10
1秒前
1秒前
忧郁醉薇完成签到,获得积分10
2秒前
未央发布了新的文献求助10
2秒前
wondor1111发布了新的文献求助10
3秒前
Yafeiyy___发布了新的文献求助10
3秒前
鸣笛应助陶醉的笑槐采纳,获得50
3秒前
3秒前
4秒前
lee完成签到,获得积分10
5秒前
小张发布了新的文献求助10
6秒前
嘟嘟嘟cpu完成签到,获得积分10
7秒前
子车一手发布了新的文献求助10
7秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得20
9秒前
李健应助1435087522采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
搜集达人应助钟大锐采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
汉堡包应助Joseph采纳,获得20
12秒前
tt666完成签到,获得积分10
13秒前
General发布了新的文献求助10
13秒前
yy发布了新的文献求助10
14秒前
烟圈发布了新的文献求助10
14秒前
我是老大应助bobo采纳,获得10
14秒前
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241296
求助须知:如何正确求助?哪些是违规求助? 3774949
关于积分的说明 11854595
捐赠科研通 3429872
什么是DOI,文献DOI怎么找? 1882621
邀请新用户注册赠送积分活动 934476
科研通“疑难数据库(出版商)”最低求助积分说明 841032