In this study, the structure of Areca nut polysaccharide (ANP) was characterized, and its effects on macrophage activation and the underlying molecular mechanisms were investigated. ANP was identified as a glucan with a molecular weight of 24.5 kDa, and its structure was analyzed using XRD, SEM, FT-IR, methylation, and NMR techniques. The main chain of ANP is composed of →4)-α-D-Glcp-(1 → and →4,6)-α-D-Glcp-(1→, with a branched α-D-Glcp-(1 → chain. Furthermore, the activation of macrophages by ANP was explored. Stimulation of RAW264.7 cells with ANP in vitro increased the expression of inflammatory cytokines (TNF-α and IL-6) and NO levels. Flow cytometry showed that ANP induced M1 macrophage polarization. RNA-seq and Western blot analyses revealed that ANP activated the NF-κB and MAPK pathways. Importantly, TLR2- and TLR4- specific antibodies did not affect ANP-induced M1 polarization, whereas endocytosis inhibitors reduced the production of inflammatory cytokines in ANP-treated macrophages. In conclusion, ANP engages macrophages without interacting with TLR2 and TLR4 receptors, inducing M1 polarization through the NF-κB and MAPK signaling pathways.