吸引子
可实现性
李雅普诺夫指数
相空间
同步(交流)
混乱的
计算机科学
分叉
极限环
李雅普诺夫函数
分岔图
控制理论(社会学)
极限(数学)
统计物理学
应用数学
拓扑(电路)
数学
物理
数学分析
算法
控制(管理)
人工智能
非线性系统
量子力学
组合数学
作者
Yang Min,Chengwei Dong,Xiaohong Sui
出处
期刊:Physica Scripta
[IOP Publishing]
日期:2023-11-20
卷期号:98 (12): 125261-125261
被引量:5
标识
DOI:10.1088/1402-4896/ad0e55
摘要
Abstract This paper proposes a novel 4D hyperchaotic system with hidden attractors and coexisting attractors, which have no equilibrium points. The dynamic behavior of the system and five groups of coexisting attractors are analyzed by applying phase space diagrams, bifurcation diagrams and the Lyapunov exponents spectrum. Additionally, the system’s stable limit cycles and unstable periodic orbits were calculated through the variational method and then encoded using symbolic dynamics. The numerical results were verified via a circuit simulation, confirming the realizability of the novel hyperchaotic system in hardware facilities. Finally, we applied the active synchronization control method to the new system with remarkable results.
科研通智能强力驱动
Strongly Powered by AbleSci AI