表观遗传学
生物
转录组
计算生物学
人类免疫缺陷病毒(HIV)
转录因子
RNA序列
DNA
细胞
核糖核酸
单元格排序
病毒学
基因表达
遗传学
基因
作者
Maelene L. Wong,Yulong Wei,Ya‐Chi Ho
出处
期刊:Current Opinion in Hiv and Aids
[Ovid Technologies (Wolters Kluwer)]
日期:2023-07-17
卷期号:18 (5): 246-256
被引量:5
标识
DOI:10.1097/coh.0000000000000809
摘要
Purpose of review The success of HIV-1 eradication strategies relies on in-depth understanding of HIV-1-infected cells. However, HIV-1-infected cells are extremely heterogeneous and rare. Single-cell multiomic approaches resolve the heterogeneity and rarity of HIV-1-infected cells. Recent findings Advancement in single-cell multiomic approaches enabled HIV-1 reservoir profiling across the epigenetic (ATAC-seq), transcriptional (RNA-seq), and protein levels (CITE-seq). Using HIV-1 RNA as a surrogate, ECCITE-seq identified enrichment of HIV-1-infected cells in clonally expanded cytotoxic CD4 + T cells. Using HIV-1 DNA PCR-activated microfluidic sorting, FIND-seq captured the bulk transcriptome of HIV-1 DNA+ cells. Using targeted HIV-1 DNA amplification, PheP-seq identified surface protein expression of intact versus defective HIV-1-infected cells. Using ATAC-seq to identify HIV-1 DNA, ASAP-seq captured transcription factor activity and surface protein expression of HIV-1 DNA+ cells. Combining HIV-1 mapping by ATAC-seq and HIV-1 RNA mapping by RNA-seq, DOGMA-seq captured the epigenetic, transcriptional, and surface protein expression of latent and transcriptionally active HIV-1-infected cells. To identify reproducible biological insights and authentic HIV-1-infected cells and avoid false-positive discovery of artifacts, we reviewed current practices of single-cell multiomic experimental design and bioinformatic analysis. Summary Single-cell multiomic approaches may identify innovative mechanisms of HIV-1 persistence, nominate therapeutic strategies, and accelerate discoveries.
科研通智能强力驱动
Strongly Powered by AbleSci AI