Predicting rock hardness using Gaussian weighted moving average filter on borehole data and machine learning

钻孔 钻探 覆盖层 地质学 克里金 粉碎 随机森林 超声波传感器 矿物学 土壤科学 材料科学 采矿工程 机器学习 计算机科学 声学 冶金 岩土工程 物理
作者
Negin Houshmand,Kamran Esmaeili,Sebastian D. Goodfellow,Juan C. Ordóñez-Calderón
出处
期刊:Minerals Engineering [Elsevier BV]
卷期号:204: 108448-108448
标识
DOI:10.1016/j.mineng.2023.108448
摘要

A comprehensive understanding of the hardness of ore being handled and processed in a mining operation can significantly improve operational efficiencies. This is feasible by providing valuable data to support decision-making through the mining value chain (drilling, blasting, loading, comminution). This study presents the results of a machine learning (ML) approach for rock hardness prediction using rock’s geophysical and geochemical features. Core samples from several mine sites were logged using a multi-sensor core logging (MSCL) system. Measurements include ultrasonic P- and S-wave velocity, elemental concentration via portable X-Ray fluorescence analyzers (pXRF), and Leeb rebound hardness, measured every 30 cm along 564 m of core samples. K-Means and PCA were used for better interpretation of the data. Supervised ML models (XGBoost and Random Forest) were utilized to predict rock hardness using the elemental concentrations and ultrasonic velocities as predictors. Since the data was collected automatically with predefined intervals, some of the measurement points were near fractures or veins. The Gaussian weighted moving average (WMA) was used to smooth out variations in geochemistry or hardness caused by local features that do not reflect the overall rock characteristics. This approach is effective for building ML models to become less susceptible to local rock features. It was concluded that the rock hardness could be effectively predicted using only geochemistry, and the process of collecting P- and S-wave velocity for hardness prediction can be skipped.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助帅气雪糕采纳,获得10
1秒前
MechaniKer发布了新的文献求助10
2秒前
3秒前
猩心发布了新的文献求助30
4秒前
Yan完成签到,获得积分10
4秒前
4秒前
天空没有极限完成签到,获得积分10
5秒前
mcc发布了新的文献求助10
6秒前
Triumph关注了科研通微信公众号
6秒前
谢耳朵发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
9秒前
噜噜噜完成签到,获得积分10
9秒前
锦鲤完成签到 ,获得积分10
9秒前
12秒前
杀殿发布了新的文献求助10
13秒前
shanshan发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
打打应助ChencanFang采纳,获得30
16秒前
17秒前
17秒前
生动明辉完成签到,获得积分10
17秒前
18秒前
焦焦完成签到,获得积分20
19秒前
泽上完成签到,获得积分10
19秒前
Angie完成签到,获得积分10
20秒前
21秒前
21秒前
冰魂应助LL采纳,获得10
21秒前
科研通AI5应助无情凡桃采纳,获得10
21秒前
cp03261完成签到,获得积分20
22秒前
22秒前
jenningseastera应助比大家采纳,获得10
22秒前
百灵发布了新的文献求助10
22秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783657
求助须知:如何正确求助?哪些是违规求助? 3328839
关于积分的说明 10238741
捐赠科研通 3044202
什么是DOI,文献DOI怎么找? 1670861
邀请新用户注册赠送积分活动 799939
科研通“疑难数据库(出版商)”最低求助积分说明 759171