Long-tail Augmented Graph Contrastive Learning for Recommendation

计算机科学 图形 杠杆(统计) 人工智能 特征学习 推荐系统 理论计算机科学 机器学习
作者
Qian Zhao,Zhengwei Wu,Zhiqiang Zhang,Jun Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.11177
摘要

Graph Convolutional Networks (GCNs) has demonstrated promising results for recommender systems, as they can effectively leverage high-order relationship. However, these methods usually encounter data sparsity issue in real-world scenarios. To address this issue, GCN-based recommendation methods employ contrastive learning to introduce self-supervised signals. Despite their effectiveness, these methods lack consideration of the significant degree disparity between head and tail nodes. This can lead to non-uniform representation distribution, which is a crucial factor for the performance of contrastive learning methods. To tackle the above issue, we propose a novel Long-tail Augmented Graph Contrastive Learning (LAGCL) method for recommendation. Specifically, we introduce a learnable long-tail augmentation approach to enhance tail nodes by supplementing predicted neighbor information, and generate contrastive views based on the resulting augmented graph. To make the data augmentation schema learnable, we design an auto drop module to generate pseudo-tail nodes from head nodes and a knowledge transfer module to reconstruct the head nodes from pseudo-tail nodes. Additionally, we employ generative adversarial networks to ensure that the distribution of the generated tail/head nodes matches that of the original tail/head nodes. Extensive experiments conducted on three benchmark datasets demonstrate the significant improvement in performance of our model over the state-of-the-arts. Further analyses demonstrate the uniformity of learned representations and the superiority of LAGCL on long-tail performance. Code is publicly available at https://github.com/im0qianqian/LAGCL
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
djbj2022发布了新的文献求助10
1秒前
Lucifer完成签到,获得积分10
1秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
蛋卷儿应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
三千世界完成签到,获得积分10
5秒前
fransiccarey完成签到,获得积分10
8秒前
fo_shuo完成签到,获得积分10
9秒前
10秒前
14秒前
刘胖胖发布了新的文献求助10
16秒前
18秒前
ll关闭了ll文献求助
19秒前
科研通AI5应助Ni采纳,获得10
19秒前
Chihiro完成签到 ,获得积分10
20秒前
阿尔卑斯完成签到,获得积分10
21秒前
Qiuyajing完成签到,获得积分10
22秒前
22秒前
李健应助miaomiao采纳,获得10
22秒前
23秒前
Z_xcv发布了新的文献求助10
24秒前
月亮发布了新的文献求助10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215380
捐赠科研通 3038867
什么是DOI,文献DOI怎么找? 1667677
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339