已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of raffinose family oligosaccharides in processed Rehmannia glutinosa Libosch using matrix‐assisted laser desorption/ionization mass spectrometry image combined with machine learning

热气腾腾的 地黄 化学 质谱法 色谱法 人工智能 主成分分析 基质辅助激光解吸/电离 分析化学(期刊) 模式识别(心理学) 生物系统 解吸 食品科学 计算机科学 医学 生物 替代医学 有机化学 病理 中医药 吸附
作者
Huizhi Li,Shishan Zhang,Yanfang Zhao,Jixiang He,Xiangfeng Chen
出处
期刊:Rapid Communications in Mass Spectrometry [Wiley]
卷期号:37 (22) 被引量:2
标识
DOI:10.1002/rcm.9635
摘要

Currently, research on oligosaccharides primarily focuses on the physiological activity and function, with a few studies elaborating on the spatial distribution characterization and variation in the processing of Rehmannia glutinosa Libosch. Thus, imaging the spatial distributions and dynamic changes in oligosaccharides during the steaming process is significant for characterizing the metabolic networks of R. glutinosa. It will be beneficial to characterize the impact of steaming on the active ingredients and distribution patterns in different parts of the plant.A highly sensitive matrix-assisted laser desorption/ionization mass spectrometry image (MALDI-MSI) method was used to visualize the spatial distribution of oligosaccharides in processed R. glutinosa. Furthermore, machine learning was used to distinguish the processed R. glutinosa samples obtained under different steaming conditions.Imaging results showed that the oligosaccharides in the fresh R. glutinosa were mainly distributed in the cortex and xylem. As steaming progressed, the tetra- and pentasaccharides were hydrolyzed and diffused gradually into the tissue section. MALDI-MS profiling combined with machine learning was used to identify the processed R. glutinosa samples accurately at different steaming intervals. Eight algorithms were used to build classification machine learning models, which were evaluated for accuracy, precision, recall, and F1 score. The linear discriminant analysis and random forest models performed the best, with prediction accuracies of 0.98 and 0.97, respectively, and thus can be considered for identifying the steaming durations of R. glutinosa.MALDI-MSI combined with machine learning can be used to visualize the distribution of oligosaccharides and identify the processed samples after steaming for different durations. This can enhance our understanding of the metabolic changes that occur during the steaming process of R. glutinosa; meanwhile, it is expected to provide a theoretical reference for the standardization and modernization of processing in the field of medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Zz采纳,获得10
刚刚
寒冷哈密瓜完成签到 ,获得积分0
刚刚
开心安莲完成签到,获得积分10
刚刚
司纤户羽完成签到 ,获得积分10
刚刚
景行行止完成签到 ,获得积分10
1秒前
只如初完成签到,获得积分10
1秒前
河鲸完成签到 ,获得积分10
2秒前
雨rain完成签到 ,获得积分10
4秒前
隐形路灯完成签到 ,获得积分10
4秒前
Axel完成签到,获得积分10
4秒前
卿玖完成签到 ,获得积分10
5秒前
fff完成签到 ,获得积分10
5秒前
痴情的明辉完成签到 ,获得积分10
5秒前
vkk完成签到 ,获得积分10
6秒前
xiao完成签到 ,获得积分10
6秒前
9464完成签到 ,获得积分10
6秒前
6秒前
ColinWine完成签到 ,获得积分10
6秒前
几两完成签到 ,获得积分10
7秒前
糖醋里脊加醋完成签到 ,获得积分10
7秒前
唠叨的源智完成签到,获得积分10
7秒前
整齐追命关注了科研通微信公众号
8秒前
雨霧雲完成签到,获得积分10
8秒前
zxx完成签到 ,获得积分10
9秒前
yf完成签到 ,获得积分10
9秒前
李爱国应助阳光血茗采纳,获得10
9秒前
顾矜应助阳光血茗采纳,获得10
9秒前
星辰大海应助阳光血茗采纳,获得10
9秒前
潇洒的马里奥完成签到,获得积分10
9秒前
周萌完成签到 ,获得积分10
10秒前
牛马自己push完成签到 ,获得积分10
10秒前
klio完成签到 ,获得积分10
10秒前
NiceSunnyDay完成签到 ,获得积分10
11秒前
yu完成签到 ,获得积分10
11秒前
blooming boy发布了新的文献求助10
11秒前
超级灰狼完成签到 ,获得积分10
12秒前
XCHI完成签到 ,获得积分10
12秒前
zxzb完成签到,获得积分10
13秒前
谢芝朗完成签到,获得积分20
13秒前
sw完成签到,获得积分10
13秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824836
求助须知:如何正确求助?哪些是违规求助? 3367210
关于积分的说明 10444654
捐赠科研通 3086444
什么是DOI,文献DOI怎么找? 1698024
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769840

今日热心研友

TaoJ
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10