A hybrid location‐dependent ultra convolutional neural network‐based vehicle number plate recognition approach for intelligent transportation systems

卷积神经网络 计算机科学 人工智能 分类器(UML) 许可证 智能交通系统 模式识别(心理学) 支持向量机 人工神经网络 探测器 机器学习 计算机视觉 工程类 电信 土木工程 操作系统
作者
Sathya Ramasamy,Ananthi Selvarajan,Vaidehi Kaliyaperumal,A. Prasanth
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:35 (8) 被引量:13
标识
DOI:10.1002/cpe.7615
摘要

Summary In today's world, identifying the owner and proprietor of a vehicle that violates driving rules or does any unintentional work on the street is a challenging task. Inspection of each driver's license number takes a long time for a highway police officer. To overcome this, many researchers have introduced an automated number plate recognition approach which is usually a computer vision‐based technique to identify the vehicle's registration plate. However, the existing recognition approaches are lagged to extract the influential features which degrade the detection accuracy and increase the misclassification errors. In this article, a novel automated number plate recognition methodology has been proposed to identify the number plates accurately with minimal error rates. Primary, a new pretrained location‐dependent ultra convolutional neural network (LUCNN) is employed to learn the influential features from the input images. These obtained features are then fed into hybrid single‐shot fully convolutional detectors with a support vector machine (SSVM) classifier to separate the vehicle's city, model, and number from the registration location. At varied automobile distances, the proposed LUCNN + SSVM model is able to retrieve the number plate regions in the picture acquired from its back end. The performance results manifest that the proposed LUCNN + SSVM model attains a better accuracy of 98.75% and a lesser error range of 1.25% than the existing recognition models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
蔡蔡蔡发布了新的文献求助10
4秒前
5秒前
大胆访蕊发布了新的文献求助30
5秒前
5秒前
平常亦凝发布了新的文献求助10
8秒前
自信鑫鹏完成签到,获得积分10
9秒前
10秒前
英俊的铭应助暴躁的香氛采纳,获得30
10秒前
冷艳莛完成签到,获得积分10
10秒前
11秒前
科研岗完成签到,获得积分10
12秒前
万能图书馆应助Master采纳,获得10
13秒前
14秒前
14秒前
pluto应助fash采纳,获得20
15秒前
任1220完成签到,获得积分20
15秒前
爱吃坤蛋的喵完成签到,获得积分10
17秒前
17秒前
iu发布了新的文献求助10
18秒前
forest完成签到,获得积分10
19秒前
fash给fash的求助进行了留言
20秒前
笨笨剑发布了新的文献求助10
20秒前
舒舒完成签到,获得积分10
21秒前
冰魂应助chenhuiminnnnnn采纳,获得10
21秒前
22秒前
大胆访蕊完成签到 ,获得积分20
22秒前
22秒前
22秒前
23秒前
111发布了新的文献求助10
23秒前
安静的叫兽完成签到,获得积分10
23秒前
舒舒发布了新的文献求助10
23秒前
wanci应助研友_pnx37L采纳,获得10
24秒前
anders完成签到,获得积分10
24秒前
26秒前
科研通AI5应助wyb采纳,获得10
26秒前
26秒前
Master发布了新的文献求助10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792