Deep Learning-Based Segmentation of Airway Morphology from Endobronchial Optical Coherence Tomography

医学 气道 光学相干层析成像 慢性阻塞性肺病 分割 哮喘 卷积神经网络 人工智能 核医学 放射科 内科学 外科 计算机科学
作者
Ziqing Zhou,Zu‐Yuan Guo,Changhao Zhong,Hui-Qi Qiu,Yu Chen,Wan‐Yuan Rao,Xiaobo Chen,Hongkai Wu,Chunli Tang,Zhuquan Su,Shiyue Li
出处
期刊:Respiration [Karger Publishers]
卷期号:102 (3): 227-236 被引量:5
标识
DOI:10.1159/000528971
摘要

Manual measurement of endobronchial optical coherence tomography (EB-OCT) images means a heavy workload in the clinical practice, which can also introduce bias if the subjective opinions of doctors are involved.We aim to develop a convolutional neural network (CNN)-based EB-OCT image analysis algorithm to automatically identify and measure EB-OCT parameters of airway morphology.The ResUNet, MultiResUNet, and Siamese network were used for analyzing airway inner area (Ai), airway wall area (Aw), airway wall area percentage (Aw%), and airway bifurcate segmentation obtained from EB-OCT imaging, respectively. The accuracy of the automatic segmentations was verified by comparing with manual measurements.Thirty-three patients who were diagnosed with asthma (n = 13), chronic obstructive pulmonary disease (COPD, n = 13), and normal airway (n = 7) were enrolled. EB-OCT was performed in RB9 segment (lateral basal segment of the right lower lobe), and a total of 17,820 OCT images were collected for CNN training, validation, and testing. After training, the Ai, Aw, and airway bifurcate were readily identified in both normal airway and airways of asthma and COPD. The ResUNet and the MultiResUNet resulted in a mean dice similarity coefficient of 0.97 and 0.95 for Ai and Aw segmentation. The accuracy Siamese network in identifying airway bifurcate was 96.6%. Bland-Altman analysis indicated there was a negligible bias between manual and CNN measurements for Ai (bias = -0.02 to 0.01, 95% CI = -0.12 to 0.14) and Aw% (bias = -0.06 to 0.12, 95% CI = -1.98 to 2.14).EB-OCT imaging in conjunction with ResUNet, MultiResUNet, and Siamese network could automatically measure normal and diseased airway structure with an accurate performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stardust完成签到,获得积分10
刚刚
刚刚
刚刚
解语花发布了新的文献求助10
2秒前
科研通AI6应助wwsss采纳,获得10
3秒前
科研通AI6应助吴彦祖采纳,获得10
3秒前
yyyyxxxg发布了新的文献求助10
4秒前
搜集达人应助考拉采纳,获得10
5秒前
crowd_lpy发布了新的文献求助10
6秒前
6秒前
6秒前
HuuuuD发布了新的文献求助10
6秒前
优秀不愁完成签到,获得积分10
8秒前
可爱的函函应助YYY采纳,获得10
9秒前
科研通AI5应助平常奇异果采纳,获得10
11秒前
5tr1ve完成签到,获得积分20
13秒前
称心的以蕊完成签到,获得积分10
13秒前
无聊的万天完成签到,获得积分10
13秒前
慕青应助fdyy1采纳,获得10
14秒前
传奇3应助姜露萍采纳,获得30
14秒前
一百分完成签到,获得积分10
14秒前
GYJ完成签到 ,获得积分10
16秒前
17秒前
17秒前
852应助crowd_lpy采纳,获得10
17秒前
17秒前
科目三应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
17秒前
Ava应助卖萌的秋田采纳,获得10
18秒前
18秒前
大模型应助科研通管家采纳,获得10
18秒前
18秒前
orixero应助科研通管家采纳,获得10
18秒前
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4726526
求助须知:如何正确求助?哪些是违规求助? 4083718
关于积分的说明 12629857
捐赠科研通 3790124
什么是DOI,文献DOI怎么找? 2093145
邀请新用户注册赠送积分活动 1118875
科研通“疑难数据库(出版商)”最低求助积分说明 995311