Contrastive Learning for Legal Judgment Prediction

计算机科学 任务(项目管理) 代表(政治) 人工智能 航程(航空) 光学(聚焦) 机器学习 法学 政治学 政治 光学 物理 复合材料 经济 管理 材料科学
作者
Han Zhang,Zhicheng Dou,Yutao Zhu,Ji-Rong Wen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:41 (4): 1-25 被引量:32
标识
DOI:10.1145/3580489
摘要

Legal judgment prediction (LJP) is a fundamental task of legal artificial intelligence. It aims to automatically predict the judgment results of legal cases. Three typical subtasks are relevant law article prediction, charge prediction, and term-of-penalty prediction. Due to the wide range of potential applications, LJP has attracted a great deal of interest, prompting the development of numerous approaches. These methods mainly focus on building a more accurate representation of a case’s fact description in order to improve the performance of judgment prediction. They overlook, however, the practical judicial scenario in which human judges often compare similar law articles or possible charges before making a final decision. To this end, we propose a supervised contrastive learning framework for the LJP task. Specifically, we train the model to distinguish (1) various law articles within the same chapter of a Law and (2) similar charges of the same law article or related law articles. By this means, the fine-grained differences between similar articles/charges can be captured, which are important for making a judgment. Besides, we optimize our model by identifying cases with the same article/charge labels, allowing it to more effectively model the relationship between the case’s fact description and its associated labels. By jointly learning the LJP task with the aforementioned contrastive learning tasks, our model achieves better performance than the state-of-the-art models on two real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奇博士完成签到,获得积分10
1秒前
传奇3应助家伟采纳,获得10
1秒前
jackystone发布了新的文献求助10
3秒前
4秒前
英姑应助年轻豌豆采纳,获得10
5秒前
5秒前
科研通AI5应助听话的捕采纳,获得30
9秒前
9秒前
Wangyingjie5发布了新的文献求助10
10秒前
夕沫完成签到,获得积分10
10秒前
todo关注了科研通微信公众号
10秒前
10秒前
黄紫红发布了新的文献求助10
11秒前
11秒前
归尘发布了新的文献求助10
11秒前
家伟发布了新的文献求助10
14秒前
知了发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
隐形曼青应助小熊采纳,获得10
17秒前
18秒前
SYLH应助彩虹海采纳,获得10
19秒前
zzy发布了新的文献求助10
20秒前
21秒前
21秒前
大模型应助小黄采纳,获得10
22秒前
22秒前
lucas发布了新的文献求助10
24秒前
ziyaoxu完成签到,获得积分10
24秒前
Sally发布了新的文献求助10
26秒前
陈鸿can发布了新的文献求助30
27秒前
28秒前
29秒前
29秒前
喜悦的妙芙关注了科研通微信公众号
30秒前
Gypsy完成签到 ,获得积分10
33秒前
33秒前
小熊发布了新的文献求助10
33秒前
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798061
求助须知:如何正确求助?哪些是违规求助? 3343561
关于积分的说明 10316564
捐赠科研通 3060257
什么是DOI,文献DOI怎么找? 1679407
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763244