Exact Two-Step Benders Decomposition for the Time Window Assignment Traveling Salesperson Problem

本德分解 窗口(计算) 分解 数学优化 计算机科学 旅行商问题 旅行时间 运筹学 数学 工程类 运输工程 生态学 生物 操作系统
作者
Şifa Çelik,Layla Martin,Albert H. Schrotenboer,Tom Van Woensel
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2024.0750
摘要

Next-day delivery logistics services are redefining the industry by increasingly focusing on customer service. Each logistics service provider’s challenge is jointly optimizing time window assignment and vehicle routing for such next-day delivery services. To do so in a cost-efficient and customer-centric fashion, real-life uncertainty, such as stochastic travel times, needs to be incorporated into the optimization process. This paper focuses on the canonical optimization problem within this context: the time window assignment traveling salesperson problem with stochastic travel times (TWATSP-ST). It belongs to two-stage, stochastic, mixed-integer programming problems with continuous recourse. We introduce two-step Benders decomposition with scenario clustering (TBDS) as an exact solution methodology for solving such stochastic programs. The method utilizes a new two-step decomposition along the binary and continuous first stage decisions and introduces a new scenario-retention strategy that combines and generalizes state-of-the-art Benders approaches and scenario-clustering techniques. Extensive experiments show that TBDS is superior to state-of-the-art approaches in the literature. It solves TWATSP-ST instances with up to 25 customers to optimality. It provides better lower and upper bounds that lead to faster convergence than existing state-of-the-art methods. We use TBDS to analyze the structure of the optimal solutions. By increasing routing costs only slightly, customer service can be improved tremendously driven by smartly alternating between high- and low-variance travel arcs to reduce the impact of delay propagation throughout the executed vehicle route. Funding: A. H. Schrotenboer has received support from the Dutch Science Foundation [Grant VI.Veni.211E.043]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0750 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五花膘完成签到 ,获得积分10
刚刚
Lucas应助刻苦的士萧采纳,获得10
刚刚
1秒前
liu发布了新的文献求助10
2秒前
冰魂应助Ryy采纳,获得10
6秒前
入暖完成签到,获得积分10
6秒前
泽锦臻完成签到 ,获得积分10
13秒前
专注的胡萝卜完成签到 ,获得积分10
16秒前
wq完成签到,获得积分10
25秒前
25秒前
li完成签到,获得积分10
27秒前
31秒前
沉默的红牛完成签到 ,获得积分10
31秒前
天天快乐应助坤坤采纳,获得10
33秒前
NexusExplorer应助黄凯采纳,获得10
34秒前
领导范儿应助msli采纳,获得10
39秒前
39秒前
顾矜应助枫也采纳,获得10
39秒前
39秒前
BUCI完成签到,获得积分10
40秒前
风趣的绮菱完成签到,获得积分10
44秒前
robin_1217完成签到,获得积分10
45秒前
gao_yiyi应助鑫搭采纳,获得20
46秒前
46秒前
BUCI发布了新的文献求助10
46秒前
小蘑菇应助哈哈哈哈哈采纳,获得10
47秒前
47秒前
Amo应助SU采纳,获得10
47秒前
健壮的绿凝完成签到,获得积分10
48秒前
许金钗完成签到,获得积分10
49秒前
hahhhah完成签到 ,获得积分10
49秒前
50秒前
王明新完成签到,获得积分10
51秒前
msli发布了新的文献求助10
51秒前
52秒前
海天使完成签到,获得积分10
52秒前
汉堡包应助赵鑫雅采纳,获得10
53秒前
鹿冶完成签到 ,获得积分10
53秒前
54秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976