deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities

深度学习 抗菌肽 人工智能 鉴定(生物学) 计算机科学 功能(生物学) 机器学习 计算生物学 生物 生物化学 植物 进化生物学
作者
Jun Zhao,Hangcheng Liu,Liang‐I Kang,W J Gao,Quan Lu,Yuan Rao,Zhenyu Yue
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.4c01913
摘要

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years. Although there are many machine learning-based AMP identification tools, most of them do not focus on or only focus on a few functional activities. Predicting the multiple activities of antimicrobial peptides can help discover candidate peptides with broad-spectrum antimicrobial ability. We propose a two-stage AMP predictor deep-AMPpred, in which the first stage distinguishes AMP from other peptides, and the second stage solves the multilabel problem of 13 common functional activities of AMP. deep-AMPpred combines the ESM-2 model to encode the features of AMP and integrates CNN, BiLSTM, and CBAM models to discover AMP and its functional activities. The ESM-2 model captures the global contextual features of the peptide sequence, while CNN, BiLSTM, and CBAM combine local feature extraction, long-term and short-term dependency modeling, and attention mechanisms to improve the performance of deep-AMPpred in AMP and its function prediction. Experimental results demonstrate that deep-AMPpred performs well in accurately identifying AMPs and predicting their functional activities. This confirms the effectiveness of using the ESM-2 model to capture meaningful peptide sequence features and integrating multiple deep learning models for AMP identification and activity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
守培发布了新的文献求助10
刚刚
okko发布了新的文献求助10
1秒前
1秒前
酷波er应助llg采纳,获得10
3秒前
在水一方应助SRsora采纳,获得10
3秒前
英姑应助SRsora采纳,获得10
3秒前
Akim应助SRsora采纳,获得10
3秒前
发条橙应助SRsora采纳,获得10
3秒前
CipherSage应助SRsora采纳,获得10
3秒前
传奇3应助SRsora采纳,获得10
3秒前
echooooo发布了新的文献求助10
3秒前
Jasper应助科研通管家采纳,获得10
5秒前
谷蓝应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
冰魂应助科研通管家采纳,获得10
5秒前
5秒前
快来拾糖完成签到 ,获得积分10
5秒前
7秒前
隐形曼青应助okko采纳,获得10
8秒前
9秒前
脑洞疼应助明理的小蘑菇采纳,获得10
10秒前
10秒前
11秒前
守培完成签到,获得积分20
11秒前
sugar发布了新的文献求助10
12秒前
茜茜发布了新的文献求助10
13秒前
隐形曼青应助自己采纳,获得10
14秒前
15秒前
16秒前
会飞的史迪奇完成签到,获得积分10
19秒前
哒哒哒完成签到,获得积分10
24秒前
牛马完成签到 ,获得积分10
24秒前
自己完成签到,获得积分10
24秒前
丁真爱学习完成签到 ,获得积分10
25秒前
聪明勇敢有力气完成签到 ,获得积分10
26秒前
zhenliu完成签到,获得积分10
26秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780178
求助须知:如何正确求助?哪些是违规求助? 3325465
关于积分的说明 10223213
捐赠科研通 3040677
什么是DOI,文献DOI怎么找? 1668962
邀请新用户注册赠送积分活动 798878
科研通“疑难数据库(出版商)”最低求助积分说明 758634