Machine learning based prediction of biomass pyrolysis with detailed reaction kinetics for thermally-thick particles: from 1D to 0D

热解 粒子(生态学) 生物量(生态学) 动力学 工作(物理) 传热 传质 材料科学 热力学 粒径 无量纲量 机械 化学 物理 物理化学 有机化学 海洋学 量子力学 地质学
作者
Hao Luo,Xiaobao Wang,Xinyan Liu,Lan Yi,Xiaoqin Wu,Xi Yu,Yi Ouyang,Weifeng Liu,Qingang Xiong
出处
期刊:Chemical Engineering Science [Elsevier BV]
卷期号:280: 119060-119060 被引量:11
标识
DOI:10.1016/j.ces.2023.119060
摘要

In reactor-scale CFD modeling of biomass pyrolysis with thermally-thick particles, zero-dimensional (0D) models coupled with lumped kinetics are commonly used, as they are simple and computationally efficient. However, intra-particle heat transfer, which cannot be directly implemented in 0D models, has significant effects on pyrolysis behaviors of thermally-thick biomass particles. Additionality, lumped kinetics usually fails to predict detailed composition of pyrolysis products. To overcome these issues, a widely-used one-dimensional (1D) model that can directly incorporate intra-particle heat transfer was employed with a detailed pyrolysis kinetics in this work to develop a corrected 0D (Cor-0D) model for accurate CFD modeling of biomass pyrolysis inside thermally-thick particles. Correction coefficients of external heat transfer, particle diameter, and pyrolysis reactions were introduced by comparing predictions of the 1D model with those of the 0D model quantitatively to reflect the effects of respective factors. The comparison demonstrates that if correction coefficients are properly determined, predictions of the developed Cor-0D model are in good agreement with experimental data as well as those of the employed 1D model under various conditions, while the 0D model overestimates mass loss rate and particle heating rate for thermally-thick biomass particles. Considering that correction coefficients are case dependent and determination of their values are tedious, artificial neural network (ANN) was used to correlate correction coefficients as functions of convective heat transfer coefficient, particle size, gas temperature, moisture content, and particle’s dimensionless temperature to derive an ANN-Cor-0D model. Results show that the ANN-Cor-0D model has the same performance as the Cor-0D model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mcl完成签到,获得积分10
1秒前
doctorw完成签到 ,获得积分0
1秒前
5秒前
搜集达人应助myg8627采纳,获得10
6秒前
粥粥完成签到 ,获得积分10
8秒前
勤恳初夏发布了新的文献求助10
8秒前
10秒前
蔡从安发布了新的文献求助10
10秒前
米博士完成签到,获得积分10
14秒前
嘟嘟52edm完成签到 ,获得积分10
16秒前
鳗鱼冰薇完成签到 ,获得积分10
17秒前
nature预备军完成签到 ,获得积分10
17秒前
Uniibooy完成签到 ,获得积分10
18秒前
斯文的慕儿完成签到 ,获得积分10
20秒前
独特纸飞机完成签到 ,获得积分10
20秒前
小男孩完成签到,获得积分10
21秒前
Wilbert完成签到 ,获得积分10
25秒前
26秒前
大画家完成签到 ,获得积分0
27秒前
Demi_Ming发布了新的文献求助10
29秒前
清爽的冬寒完成签到 ,获得积分10
32秒前
tao完成签到 ,获得积分10
34秒前
宅心仁厚完成签到 ,获得积分10
36秒前
科研通AI5应助积极乐安采纳,获得10
38秒前
嘻嘻哈哈啊完成签到 ,获得积分10
46秒前
个性仙人掌完成签到 ,获得积分10
46秒前
NexusExplorer应助科研通管家采纳,获得10
48秒前
黑眼圈完成签到 ,获得积分10
51秒前
d_fishier完成签到 ,获得积分10
51秒前
碧蓝雁风完成签到 ,获得积分10
52秒前
风信子deon01完成签到,获得积分10
55秒前
韧迹完成签到 ,获得积分10
57秒前
57秒前
细心笑卉完成签到 ,获得积分10
57秒前
年少轻狂最情深完成签到 ,获得积分10
57秒前
hhhee完成签到,获得积分10
58秒前
1分钟前
Yanan完成签到 ,获得积分10
1分钟前
貔貅完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788426
求助须知:如何正确求助?哪些是违规求助? 3333726
关于积分的说明 10263298
捐赠科研通 3049649
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511