From identification to forecasting: the potential of image recognition and artificial intelligence for aphid pest monitoring

背景(考古学) 鉴定(生物学) 有害生物分析 瓶颈 人工智能 生物 计算机科学 机器学习 生态学 植物 嵌入式系统 古生物学
作者
Philipp Batz,Torsten Will,Steffen Thiel,Tim Ziesche,Christoph Joachim
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:14 被引量:17
标识
DOI:10.3389/fpls.2023.1150748
摘要

Insect monitoring has gained global public attention in recent years in the context of insect decline and biodiversity loss. Monitoring methods that can collect samples over a long period of time and independently of human influences are of particular importance. While these passive collection methods, e.g. suction traps, provide standardized and comparable data sets, the time required to analyze the large number of samples and trapped specimens is high. Another challenge is the necessary high level of taxonomic expertise required for accurate specimen processing. These factors create a bottleneck in specimen processing. In this context, machine learning, image recognition and artificial intelligence have emerged as promising tools to address the shortcomings of manual identification and quantification in the analysis of such trap catches. Aphids are important agricultural pests that pose a significant risk to several important crops and cause high economic losses through feeding damage and transmission of plant viruses. It has been shown that long-term monitoring of migrating aphids using suction traps can be used to make, adjust and improve predictions of their abundance so that the risk of plant viruses spreading through aphids can be more accurately predicted. With the increasing demand for alternatives to conventional pesticide use in crop protection, the need for predictive models is growing, e.g. as a basis for resistance development and as a measure for resistance management. In this context, advancing climate change has a strong influence on the total abundance of migrating aphids as well as on the peak occurrences of aphids within a year. Using aphids as a model organism, we demonstrate the possibilities of systematic monitoring of insect pests and the potential of future technical developments in the subsequent automated identification of individuals through to the use of case data for intelligent forecasting models. Using aphids as an example, we show the potential for systematic monitoring of insect pests through technical developments in the automated identification of individuals from static images (i.e. advances in image recognition software). We discuss the potential applications with regard to the automatic processing of insect case data and the development of intelligent prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷大喵发布了新的文献求助10
1秒前
淡然士晋发布了新的文献求助10
1秒前
三愿完成签到 ,获得积分10
1秒前
4秒前
BONe完成签到,获得积分10
6秒前
研友_CCQ_M完成签到,获得积分10
7秒前
科研通AI5应助hui采纳,获得10
7秒前
BONe发布了新的文献求助10
8秒前
TT2022发布了新的文献求助10
9秒前
赘婿应助yangching采纳,获得10
10秒前
搜集达人应助成诗怡采纳,获得10
11秒前
不甜完成签到 ,获得积分10
12秒前
12秒前
李健应助yeyii采纳,获得10
13秒前
15秒前
17秒前
17秒前
yige发布了新的文献求助10
17秒前
18秒前
淡然士晋完成签到,获得积分10
19秒前
暗月皇发布了新的文献求助10
19秒前
糊涂的元珊完成签到 ,获得积分10
19秒前
Mry完成签到,获得积分10
20秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
23秒前
日出发布了新的文献求助10
23秒前
成诗怡发布了新的文献求助10
23秒前
KXC完成签到,获得积分20
23秒前
huahua完成签到 ,获得积分10
26秒前
田様应助Oasis采纳,获得10
26秒前
阳光完成签到,获得积分10
28秒前
冲冲冲完成签到,获得积分10
28秒前
暖羊羊Y完成签到 ,获得积分10
30秒前
顺其自然_666888完成签到,获得积分10
30秒前
wy1693207859完成签到,获得积分10
31秒前
邓佳鑫Alan应助芷兰丁香采纳,获得10
31秒前
成诗怡完成签到,获得积分10
32秒前
Yu完成签到,获得积分10
35秒前
渣渣凡完成签到,获得积分10
36秒前
37秒前
zhouyan完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734