A LiDAR SLAM System With Geometry Feature Group-Based Stable Feature Selection and Three-Stage Loop Closure Optimization

激光雷达 同时定位和映射 特征提取 里程计 人工智能 计算机科学 特征(语言学) 计算机视觉 测距 模式识别(心理学) 遥感 机器人 移动机器人 地理 电信 哲学 语言学
作者
Meng Xu,Shiqi Lin,Jikai Wang,Zonghai Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:13
标识
DOI:10.1109/tim.2023.3292956
摘要

Nowadays, Light Detection and Ranging (LiDAR) sensors have been increasingly used in robotics, particularly in autonomous vehicles, for localization and mapping tasks. However, the use of LiDAR Simultaneous Localization and Mapping (SLAM) in various scenarios is still limited. In this paper, we propose a LiDAR SLAM system that addresses this issue by grouping consistent and stable geometry feature to better express the environmental properties in both odometry and loop closure detection. Specifically, to achieve stable geometry feature extraction in the LiDAR odometry component, we adapt an adaptive feature extraction technique that extracts planar, linear, and point features. Additionally, we cluster the extracted geometry features to filter out noise. We also analyze the geometry feature matching error and constraint consistency to ensure that the constraints built from these features are stable and repeatable. For the global optimization component, we construct a three-stage loop closure detection approach based on the distribution of geometry feature groups and their corresponding relationships. Quantitative and qualitative experiments on the KITTI dataset, MulRan dataset, and a dataset collected on university campus demonstrate the adaptability, accuracy, and repeatability of our method. In conclusion, our proposed LiDAR SLAM system improves the performance in complex and diverse scenarios by implementing stable geometry feature extraction, effective feature constraint classification, and accurate loop closure detection. The source code of our approach is available at https://github.com/qq1962572025/GeometrySLAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于于于完成签到,获得积分20
1秒前
王大纯完成签到,获得积分20
2秒前
Wakey完成签到,获得积分10
3秒前
向禄临马完成签到,获得积分10
3秒前
猛男航发布了新的文献求助10
3秒前
5秒前
滕州笑完成签到,获得积分10
6秒前
布鲁发布了新的文献求助10
6秒前
6秒前
dracovu发布了新的文献求助100
7秒前
脑洞疼应助于于于采纳,获得10
7秒前
wille发布了新的文献求助10
8秒前
许诺发布了新的文献求助10
8秒前
乖加油完成签到,获得积分20
9秒前
xiaoshi完成签到,获得积分10
9秒前
zzzz完成签到,获得积分10
10秒前
科研助手6应助gyd采纳,获得10
10秒前
11秒前
粗暴的大门完成签到,获得积分10
11秒前
痴情的靖柔完成签到 ,获得积分10
12秒前
FashionBoy应助hhy采纳,获得10
13秒前
13秒前
13秒前
13秒前
布鲁完成签到,获得积分10
13秒前
14秒前
舞拽拽完成签到,获得积分10
14秒前
14秒前
卓飞扬完成签到,获得积分10
15秒前
zzzz发布了新的文献求助50
15秒前
呵呵呵完成签到,获得积分10
16秒前
减振降噪完成签到,获得积分10
16秒前
棉花糖完成签到 ,获得积分10
17秒前
日四又发布了新的文献求助10
18秒前
故酒应助科研通管家采纳,获得30
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
IMxYang应助科研通管家采纳,获得10
19秒前
赘婿应助超级书南采纳,获得10
19秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816874
求助须知:如何正确求助?哪些是违规求助? 3360257
关于积分的说明 10407382
捐赠科研通 3078228
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767924