Highly Selective Toward Four- or Two-Electrons ORR on Nitrogen Doped Carbon Nano Structures in Fuel Cells for Space Applications

催化作用 过电位 碳纤维 材料科学 化学工程 电子转移 介孔材料 碳纳米管 化学 无机化学 纳米技术 电化学 光化学 有机化学 电极 复合材料 复合数 工程类 物理化学
作者
Armando Peña,Santosh H. Vijapur,Timothy Hall,Stephen J. Snyder,Jeffrey Sweterlitsch,E. J. Taylor,Carlos R. Cabrera
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (57): 2458-2458
标识
DOI:10.1149/ma2019-02/57/2458
摘要

Human space travel requires several technological developments that support fuel generation and the energy-efficient preservation of closed systems in microgravity spaceship environments [1]. Fuel cells are promising candidates for clean energy conversion for terrestrial and space applications. The overpotential required for the Oxygen Reduction Reaction (ORR) and the degradation of the electrocatalysts are the main factors that diminish practical application of fuel cells [2]. ORR in aqueous solutions occurs mainly by two pathways: the direct four-electron reduction pathway from O2 to H2O, and the two-electron reduction pathway from O2 to hydrogen peroxide (H2O2). In fuel cell processes, the four-electron direct pathway is highly preferred. The two-electron reduction pathway is used in industry for H2O2 production [3]. Carbon nanostructures have been previously used as catalyst due to high stability and surface area, high electrical conductivity for providing electrical pathways, and mesoporous structure for the facile diffusion of reactants and by-products. Studies have revealed that carbon nanostructures and nitrogen doped carbon structures show catalytic activity in ORR [5,6]. A metal-free mesoporous nitrogen-doped carbon catalyst showed a high electrocatalytic activity, durability and selectivity toward peroxide by electrochemical converting of O 2 in a non-corrosive neutral as well as in acidic reaction medium [7,8]. Accordingly, in order to evaluate the ORR electron transfer pathway on highly stable nitrogen doped carbon nanostructures, we developed an alternative post-synthesis nitrogen doping of Vulcan and CNOs. The doping process was developed by thermal treatment in atmospheric pressure, using dicyandiamide (DCDA) as nitrogen precursor. The operational parameter conditions of the thermal reactor were a reaction temperature 700 °C, 2 mL/min of total argon gas flow, and a composition of precursors 2:1 DCDA:Vulcan and DCDA:CNOs. Our research involves increase surface area of carbon pristine source and improve its electronic structure and understanding of the nitrogen intercalation process by possible pyrolytic–nucleophilic mechanism of N-C doping reaction. The structural properties of the NVulcan and NCNOs were investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. NVulcan and NCNOs electrochemical characterization revealed higher performance than Vulcan and CNOs, respectively, due to N doping. Nitrogen doping in the Vulcan and CNOs enhances the electronic conductivity and specific capacitance. An analysis of the rotating disk electrode (RDE) technique data was done to evaluate the ORR kinetics, including n -values which are related to the mechanism of oxidation, at the NVulcan and NCNOs, using the Koutechy-Levich (K-L) equation. The pH Effect on Oxygen Reduction Reaction over N-doped carbon nanostructures in O 2 saturated 0.2 M Na 2 2SO 4 was evaluated by a scan rate of 10 mV/s at different rotation rates: 300, 700 1100, 1500, and 1900 rpm. Our results could be evidence that the two-electrons and four-electrons transfer pathway selectivity, depend on the supporting electrolyte, i.e ., pH value and nature of electrolyte, and increases to 0.2M Na 2 SO 4 according to neutral (2.5 electrons) > acidic (1.4 electrons) > alkaline (3.4 electrons). Initial fuel cell tests, utilizing oxygen and RO water, showed that NVulcan and NCNOs can generate 0.30 and 0.08 w/w% peroxide concentration, respectively. The system output current was 0.20 amps for NVulcan and 0.30 amps for NCNOs. These results suggested that NVulcan performs an extremely high selectivity toward a two-electron pathway reduction process, whereas NCNOs catalyzes a four-electron route. Therefore, our approach would be promising to control of four- or two-electrons route kinetics of ORR in fuel cells for space technologies, by the supporting electrolyte, nanocarbon source and nitrogen doped nanocarbon configurations. NASA Strategic Plan. National Aeronautics and Space Administration, 2018, at: https://www.nasa.gov/sites/default/files/atoms/files/nasa_2018_strategic_plan.pdf. K. Nørskov, J. Rossmeisl, A. Logadottir and L. Lindqvist. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B , 108 (46), 17886–17892, 2004. Song, C,; Zhang, J.; Electrocatalytic oxygen reduction reaction in PEM fuel cell electrocatalysts and catalyst layers. Springer; 2008, 89-134. Hennrich, C. Chan, V. Moore, M. Rolandi, and M. O’Connell, “The element carbon,” in Carbon Nanotubes Properties and Applications, M. J. O’Connell, Ed., Taylor & Francis, Boca Raton, Fla, USA, 2006. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF. Superior electric double layer capacitors using ordered mesoporous carbons. Carbon, 44(2):216–24, 2006. Frédéric Haschéa, Mehtap Oezaslan, Peter Strasser, Tim-Patrick Fellinger. Electrocatalytic hydrogen peroxide formation on mesoporousnon-metal nitrogen-doped carbon catalyst. Journal of Energy Chemistry 25, 251-257, 2016. Ramaswamy , U. Tylus , Q. Jia , S. Mukerjee , J. Activity Descriptor Identification for Oxygen Reduction on Non-Precious Electrocatalysts: Linking Surface Science to Coordination Chemistry. J. Am. Chem. Soc . 135, 15443-15449, 2013.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婉莹完成签到 ,获得积分0
刚刚
cripple发布了新的文献求助10
1秒前
丰盛的煎饼应助zyjsunye采纳,获得10
2秒前
TOUHOUU完成签到,获得积分10
2秒前
沉沉完成签到 ,获得积分0
3秒前
黑球发布了新的文献求助10
3秒前
今宵 别梦寒完成签到 ,获得积分10
5秒前
6秒前
Krim完成签到 ,获得积分10
7秒前
隔壁的镇长完成签到,获得积分10
9秒前
yys发布了新的文献求助10
10秒前
浮生若梦完成签到,获得积分10
11秒前
黑球完成签到,获得积分10
11秒前
燕晓啸完成签到 ,获得积分0
11秒前
epmoct完成签到 ,获得积分10
12秒前
一叶舟完成签到,获得积分10
14秒前
李健应助黑球采纳,获得10
15秒前
伴夏完成签到 ,获得积分10
20秒前
徐悦完成签到,获得积分10
25秒前
25秒前
cripple完成签到,获得积分10
30秒前
wowser发布了新的文献求助10
32秒前
整齐的大开完成签到 ,获得积分10
32秒前
涨芝士完成签到 ,获得积分10
35秒前
悬崖茶杯完成签到 ,获得积分10
36秒前
wowser完成签到,获得积分10
40秒前
科研通AI2S应助辛勤寻琴采纳,获得10
43秒前
philophysics关注了科研通微信公众号
44秒前
LISHO完成签到 ,获得积分10
44秒前
panpan111完成签到,获得积分10
50秒前
可爱的紫菜完成签到 ,获得积分10
56秒前
luckweb完成签到,获得积分10
1分钟前
李爱国应助i好运采纳,获得10
1分钟前
小墨墨完成签到 ,获得积分10
1分钟前
研友_851KE8发布了新的文献求助10
1分钟前
twelveyears完成签到 ,获得积分10
1分钟前
1分钟前
务实青筠完成签到 ,获得积分10
1分钟前
nine2652完成签到 ,获得积分10
1分钟前
跳跃完成签到,获得积分10
1分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052652
求助须知:如何正确求助?哪些是违规求助? 2709874
关于积分的说明 7418298
捐赠科研通 2354492
什么是DOI,文献DOI怎么找? 1246104
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921