Highly Selective Toward Four- or Two-Electrons ORR on Nitrogen Doped Carbon Nano Structures in Fuel Cells for Space Applications

催化作用 过电位 碳纤维 材料科学 化学工程 电子转移 介孔材料 碳纳米管 化学 无机化学 纳米技术 电化学 光化学 有机化学 电极 复合材料 复合数 工程类 物理化学
作者
Armando Peña,Santosh H. Vijapur,Timothy Hall,Stephen J. Snyder,Jeffrey Sweterlitsch,E. J. Taylor,Carlos R. Cabrera
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (57): 2458-2458
标识
DOI:10.1149/ma2019-02/57/2458
摘要

Human space travel requires several technological developments that support fuel generation and the energy-efficient preservation of closed systems in microgravity spaceship environments [1]. Fuel cells are promising candidates for clean energy conversion for terrestrial and space applications. The overpotential required for the Oxygen Reduction Reaction (ORR) and the degradation of the electrocatalysts are the main factors that diminish practical application of fuel cells [2]. ORR in aqueous solutions occurs mainly by two pathways: the direct four-electron reduction pathway from O2 to H2O, and the two-electron reduction pathway from O2 to hydrogen peroxide (H2O2). In fuel cell processes, the four-electron direct pathway is highly preferred. The two-electron reduction pathway is used in industry for H2O2 production [3]. Carbon nanostructures have been previously used as catalyst due to high stability and surface area, high electrical conductivity for providing electrical pathways, and mesoporous structure for the facile diffusion of reactants and by-products. Studies have revealed that carbon nanostructures and nitrogen doped carbon structures show catalytic activity in ORR [5,6]. A metal-free mesoporous nitrogen-doped carbon catalyst showed a high electrocatalytic activity, durability and selectivity toward peroxide by electrochemical converting of O 2 in a non-corrosive neutral as well as in acidic reaction medium [7,8]. Accordingly, in order to evaluate the ORR electron transfer pathway on highly stable nitrogen doped carbon nanostructures, we developed an alternative post-synthesis nitrogen doping of Vulcan and CNOs. The doping process was developed by thermal treatment in atmospheric pressure, using dicyandiamide (DCDA) as nitrogen precursor. The operational parameter conditions of the thermal reactor were a reaction temperature 700 °C, 2 mL/min of total argon gas flow, and a composition of precursors 2:1 DCDA:Vulcan and DCDA:CNOs. Our research involves increase surface area of carbon pristine source and improve its electronic structure and understanding of the nitrogen intercalation process by possible pyrolytic–nucleophilic mechanism of N-C doping reaction. The structural properties of the NVulcan and NCNOs were investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. NVulcan and NCNOs electrochemical characterization revealed higher performance than Vulcan and CNOs, respectively, due to N doping. Nitrogen doping in the Vulcan and CNOs enhances the electronic conductivity and specific capacitance. An analysis of the rotating disk electrode (RDE) technique data was done to evaluate the ORR kinetics, including n -values which are related to the mechanism of oxidation, at the NVulcan and NCNOs, using the Koutechy-Levich (K-L) equation. The pH Effect on Oxygen Reduction Reaction over N-doped carbon nanostructures in O 2 saturated 0.2 M Na 2 2SO 4 was evaluated by a scan rate of 10 mV/s at different rotation rates: 300, 700 1100, 1500, and 1900 rpm. Our results could be evidence that the two-electrons and four-electrons transfer pathway selectivity, depend on the supporting electrolyte, i.e ., pH value and nature of electrolyte, and increases to 0.2M Na 2 SO 4 according to neutral (2.5 electrons) > acidic (1.4 electrons) > alkaline (3.4 electrons). Initial fuel cell tests, utilizing oxygen and RO water, showed that NVulcan and NCNOs can generate 0.30 and 0.08 w/w% peroxide concentration, respectively. The system output current was 0.20 amps for NVulcan and 0.30 amps for NCNOs. These results suggested that NVulcan performs an extremely high selectivity toward a two-electron pathway reduction process, whereas NCNOs catalyzes a four-electron route. Therefore, our approach would be promising to control of four- or two-electrons route kinetics of ORR in fuel cells for space technologies, by the supporting electrolyte, nanocarbon source and nitrogen doped nanocarbon configurations. NASA Strategic Plan. National Aeronautics and Space Administration, 2018, at: https://www.nasa.gov/sites/default/files/atoms/files/nasa_2018_strategic_plan.pdf. K. Nørskov, J. Rossmeisl, A. Logadottir and L. Lindqvist. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B , 108 (46), 17886–17892, 2004. Song, C,; Zhang, J.; Electrocatalytic oxygen reduction reaction in PEM fuel cell electrocatalysts and catalyst layers. Springer; 2008, 89-134. Hennrich, C. Chan, V. Moore, M. Rolandi, and M. O’Connell, “The element carbon,” in Carbon Nanotubes Properties and Applications, M. J. O’Connell, Ed., Taylor & Francis, Boca Raton, Fla, USA, 2006. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF. Superior electric double layer capacitors using ordered mesoporous carbons. Carbon, 44(2):216–24, 2006. Frédéric Haschéa, Mehtap Oezaslan, Peter Strasser, Tim-Patrick Fellinger. Electrocatalytic hydrogen peroxide formation on mesoporousnon-metal nitrogen-doped carbon catalyst. Journal of Energy Chemistry 25, 251-257, 2016. Ramaswamy , U. Tylus , Q. Jia , S. Mukerjee , J. Activity Descriptor Identification for Oxygen Reduction on Non-Precious Electrocatalysts: Linking Surface Science to Coordination Chemistry. J. Am. Chem. Soc . 135, 15443-15449, 2013.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
残月下的樱花完成签到,获得积分10
2秒前
潇洒的问夏完成签到 ,获得积分10
2秒前
王茹梦完成签到,获得积分10
4秒前
Sean完成签到,获得积分10
4秒前
Haifeng完成签到,获得积分10
5秒前
眉间一把刀完成签到,获得积分10
6秒前
小绵羊完成签到,获得积分20
7秒前
8秒前
酷炫的八宝粥应助小绵羊采纳,获得10
8秒前
珂不乖完成签到,获得积分10
11秒前
Lucas应助彼得大帝采纳,获得10
11秒前
灵活又幸福的胖完成签到,获得积分10
11秒前
keeptg完成签到,获得积分10
11秒前
摆烂小子完成签到 ,获得积分10
12秒前
内向的擎完成签到,获得积分10
13秒前
zxs完成签到 ,获得积分10
15秒前
Sean关注了科研通微信公众号
15秒前
秋雪瑶应助will采纳,获得10
15秒前
16秒前
达不溜的话语权完成签到,获得积分10
18秒前
18秒前
打打应助JKWu采纳,获得10
18秒前
Huaiman发布了新的文献求助10
20秒前
虎咪咪完成签到,获得积分10
21秒前
21秒前
Su完成签到,获得积分10
22秒前
ayfywu发布了新的文献求助10
23秒前
鸭鸭王子发布了新的文献求助10
23秒前
xing完成签到,获得积分10
24秒前
星星的样子完成签到 ,获得积分10
24秒前
24秒前
田様应助慢慢取经的小狗采纳,获得10
25秒前
直率的犀牛完成签到,获得积分10
27秒前
欢呼山雁完成签到,获得积分10
28秒前
Orange应助Huaiman采纳,获得10
29秒前
2233完成签到,获得积分10
30秒前
will发布了新的文献求助10
31秒前
32秒前
32秒前
Zxxxxx完成签到,获得积分10
32秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 1500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2469246
求助须知:如何正确求助?哪些是违规求助? 2136434
关于积分的说明 5443488
捐赠科研通 1860946
什么是DOI,文献DOI怎么找? 925532
版权声明 562702
科研通“疑难数据库(出版商)”最低求助积分说明 495140