Highly Selective Toward Four- or Two-Electrons ORR on Nitrogen Doped Carbon Nano Structures in Fuel Cells for Space Applications

催化作用 过电位 碳纤维 材料科学 化学工程 电子转移 介孔材料 碳纳米管 化学 无机化学 纳米技术 电化学 光化学 有机化学 电极 复合材料 工程类 物理化学 复合数
作者
Armando Peña,Santosh H. Vijapur,Timothy Hall,Stephen J. Snyder,Jeffrey Sweterlitsch,E. J. Taylor,Carlos R. Cabrera
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (57): 2458-2458
标识
DOI:10.1149/ma2019-02/57/2458
摘要

Human space travel requires several technological developments that support fuel generation and the energy-efficient preservation of closed systems in microgravity spaceship environments [1]. Fuel cells are promising candidates for clean energy conversion for terrestrial and space applications. The overpotential required for the Oxygen Reduction Reaction (ORR) and the degradation of the electrocatalysts are the main factors that diminish practical application of fuel cells [2]. ORR in aqueous solutions occurs mainly by two pathways: the direct four-electron reduction pathway from O2 to H2O, and the two-electron reduction pathway from O2 to hydrogen peroxide (H2O2). In fuel cell processes, the four-electron direct pathway is highly preferred. The two-electron reduction pathway is used in industry for H2O2 production [3]. Carbon nanostructures have been previously used as catalyst due to high stability and surface area, high electrical conductivity for providing electrical pathways, and mesoporous structure for the facile diffusion of reactants and by-products. Studies have revealed that carbon nanostructures and nitrogen doped carbon structures show catalytic activity in ORR [5,6]. A metal-free mesoporous nitrogen-doped carbon catalyst showed a high electrocatalytic activity, durability and selectivity toward peroxide by electrochemical converting of O 2 in a non-corrosive neutral as well as in acidic reaction medium [7,8]. Accordingly, in order to evaluate the ORR electron transfer pathway on highly stable nitrogen doped carbon nanostructures, we developed an alternative post-synthesis nitrogen doping of Vulcan and CNOs. The doping process was developed by thermal treatment in atmospheric pressure, using dicyandiamide (DCDA) as nitrogen precursor. The operational parameter conditions of the thermal reactor were a reaction temperature 700 °C, 2 mL/min of total argon gas flow, and a composition of precursors 2:1 DCDA:Vulcan and DCDA:CNOs. Our research involves increase surface area of carbon pristine source and improve its electronic structure and understanding of the nitrogen intercalation process by possible pyrolytic–nucleophilic mechanism of N-C doping reaction. The structural properties of the NVulcan and NCNOs were investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. NVulcan and NCNOs electrochemical characterization revealed higher performance than Vulcan and CNOs, respectively, due to N doping. Nitrogen doping in the Vulcan and CNOs enhances the electronic conductivity and specific capacitance. An analysis of the rotating disk electrode (RDE) technique data was done to evaluate the ORR kinetics, including n -values which are related to the mechanism of oxidation, at the NVulcan and NCNOs, using the Koutechy-Levich (K-L) equation. The pH Effect on Oxygen Reduction Reaction over N-doped carbon nanostructures in O 2 saturated 0.2 M Na 2 2SO 4 was evaluated by a scan rate of 10 mV/s at different rotation rates: 300, 700 1100, 1500, and 1900 rpm. Our results could be evidence that the two-electrons and four-electrons transfer pathway selectivity, depend on the supporting electrolyte, i.e ., pH value and nature of electrolyte, and increases to 0.2M Na 2 SO 4 according to neutral (2.5 electrons) > acidic (1.4 electrons) > alkaline (3.4 electrons). Initial fuel cell tests, utilizing oxygen and RO water, showed that NVulcan and NCNOs can generate 0.30 and 0.08 w/w% peroxide concentration, respectively. The system output current was 0.20 amps for NVulcan and 0.30 amps for NCNOs. These results suggested that NVulcan performs an extremely high selectivity toward a two-electron pathway reduction process, whereas NCNOs catalyzes a four-electron route. Therefore, our approach would be promising to control of four- or two-electrons route kinetics of ORR in fuel cells for space technologies, by the supporting electrolyte, nanocarbon source and nitrogen doped nanocarbon configurations. NASA Strategic Plan. National Aeronautics and Space Administration, 2018, at: https://www.nasa.gov/sites/default/files/atoms/files/nasa_2018_strategic_plan.pdf. K. Nørskov, J. Rossmeisl, A. Logadottir and L. Lindqvist. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B , 108 (46), 17886–17892, 2004. Song, C,; Zhang, J.; Electrocatalytic oxygen reduction reaction in PEM fuel cell electrocatalysts and catalyst layers. Springer; 2008, 89-134. Hennrich, C. Chan, V. Moore, M. Rolandi, and M. O’Connell, “The element carbon,” in Carbon Nanotubes Properties and Applications, M. J. O’Connell, Ed., Taylor & Francis, Boca Raton, Fla, USA, 2006. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF. Superior electric double layer capacitors using ordered mesoporous carbons. Carbon, 44(2):216–24, 2006. Frédéric Haschéa, Mehtap Oezaslan, Peter Strasser, Tim-Patrick Fellinger. Electrocatalytic hydrogen peroxide formation on mesoporousnon-metal nitrogen-doped carbon catalyst. Journal of Energy Chemistry 25, 251-257, 2016. Ramaswamy , U. Tylus , Q. Jia , S. Mukerjee , J. Activity Descriptor Identification for Oxygen Reduction on Non-Precious Electrocatalysts: Linking Surface Science to Coordination Chemistry. J. Am. Chem. Soc . 135, 15443-15449, 2013.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
youcclucky发布了新的文献求助10
刚刚
熊熊发布了新的文献求助10
2秒前
辛勤香岚完成签到,获得积分10
3秒前
Dongjie完成签到,获得积分10
3秒前
Hello应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
美好乐松应助科研通管家采纳,获得10
5秒前
迟大猫应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
迟大猫应助科研通管家采纳,获得10
5秒前
迟大猫应助科研通管家采纳,获得10
5秒前
迟大猫应助科研通管家采纳,获得10
5秒前
迟大猫应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
迟大猫应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
美好乐松应助科研通管家采纳,获得10
6秒前
1+1应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
hhhhhhmt完成签到 ,获得积分10
6秒前
1+1应助科研通管家采纳,获得10
6秒前
lulu应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
着急的大米完成签到 ,获得积分10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
7秒前
情怀应助Rosaline采纳,获得20
8秒前
Hello应助喜乐采纳,获得30
9秒前
我爱看文献完成签到 ,获得积分10
11秒前
星星完成签到 ,获得积分10
11秒前
小林完成签到,获得积分10
11秒前
杨大夫发布了新的文献求助10
14秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671598
求助须知:如何正确求助?哪些是违规求助? 3228309
关于积分的说明 9779385
捐赠科研通 2938622
什么是DOI,文献DOI怎么找? 1610143
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093