清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A two-center radiomic analysis for differentiating major depressive disorder using multi-modality MRI data under different parcellation methods

模态(人机交互) 中心(范畴论) 心理学 医学 人工智能 重性抑郁障碍 计算机科学 临床心理学 心情 化学 结晶学
作者
Kai Sun,Zhenyu Liu,Guanmao Chen,Zhifeng Zhou,Shuming Zhong,Zhenchao Tang,Shuo Wang,Guifei Zhou,Xuezhi Zhou,Lizhi Shao,Xiaoying Ye,Yingli Zhang,Yanbin Jia,Jiyang Pan,Li Huang,Xia Liu,Jiangang Liu,Jie Tian,Ying Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:300: 1-9 被引量:16
标识
DOI:10.1016/j.jad.2021.12.065
摘要

The present study aimed to explore the difference in the brain function and structure between patients with major depressive disorder (MDD) and healthy controls (HCs) using two-center and multi-modal MRI data, which would be helpful to investigate the pathogenesis of MDD. The subjects were collected from two hospitals. One including 140 patients with MDD and 138 HCs was used as primary cohort. Another one including 29 patients with MDD and 52 HCs was used as validation cohort. Functional and structural magnetic resonance images (MRI) were acquired to extract four types of features: functional connectivity (FC), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and gray matter volume (GMV). Then classifiers using different combinations among the four types of selected features were respectively built to discriminate patients from HCs. Different templates were applied and the results under different templates were compared. The classifier built with the combination of FC, ALFF, and GMV under the AAL template discriminated patients from HCs with the best performance (AUC=0.916, ACC=84.8%). The regions selected in all the different templates were mainly located in the default mode network, affective network, prefrontal cortex. First, the sample size of the validation cohort was limited. Second, diffusion tensor imaging data were not collected. The performance of classifier was improved by using multi-modal MRI imaging. Different templates would be suitable for different types of analysis. The regions selected in all the different templates are possibly the core regions to investigate the pathophysiology of MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liman完成签到,获得积分20
1秒前
6秒前
周周南完成签到,获得积分10
6秒前
像猫的狗完成签到 ,获得积分10
7秒前
周周南发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
沉静香氛完成签到 ,获得积分10
15秒前
Bryan应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
Bryan应助科研通管家采纳,获得10
17秒前
Bryan应助科研通管家采纳,获得10
17秒前
香菜大姐发布了新的文献求助10
18秒前
Terahertz完成签到 ,获得积分10
21秒前
不如看海完成签到 ,获得积分10
25秒前
kuyi完成签到 ,获得积分10
26秒前
七人七发布了新的文献求助10
28秒前
CH完成签到,获得积分10
33秒前
sponge完成签到 ,获得积分10
43秒前
doctorbin完成签到 ,获得积分10
46秒前
49秒前
swj发布了新的文献求助10
54秒前
56秒前
Tomorrow123完成签到 ,获得积分10
57秒前
有终完成签到 ,获得积分10
58秒前
Yolenders完成签到 ,获得积分10
1分钟前
spy完成签到 ,获得积分10
1分钟前
1分钟前
小K完成签到 ,获得积分10
1分钟前
啦啦啦完成签到 ,获得积分10
1分钟前
七人七发布了新的文献求助10
1分钟前
香菜大姐发布了新的文献求助10
1分钟前
翟帅亚完成签到 ,获得积分10
1分钟前
11号楼203完成签到,获得积分10
1分钟前
swj完成签到,获得积分10
1分钟前
t铁核桃1985完成签到 ,获得积分10
1分钟前
zzjj完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小苹果完成签到,获得积分10
1分钟前
取名叫做利完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008669
求助须知:如何正确求助?哪些是违规求助? 3548328
关于积分的说明 11298785
捐赠科研通 3283020
什么是DOI,文献DOI怎么找? 1810281
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218