A two-center radiomic analysis for differentiating major depressive disorder using multi-modality MRI data under different parcellation methods

模态(人机交互) 中心(范畴论) 心理学 医学 人工智能 重性抑郁障碍 计算机科学 临床心理学 心情 化学 结晶学
作者
Kai Sun,Zhenyu Liu,Guanmao Chen,Zhifeng Zhou,Shuming Zhong,Zhenchao Tang,Shuo Wang,Guifei Zhou,Xuezhi Zhou,Lizhi Shao,Xiaoying Ye,Yingli Zhang,Yanbin Jia,Jiyang Pan,Li Huang,Xia Liu,Jiangang Liu,Jie Tian,Ying Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:300: 1-9 被引量:16
标识
DOI:10.1016/j.jad.2021.12.065
摘要

The present study aimed to explore the difference in the brain function and structure between patients with major depressive disorder (MDD) and healthy controls (HCs) using two-center and multi-modal MRI data, which would be helpful to investigate the pathogenesis of MDD. The subjects were collected from two hospitals. One including 140 patients with MDD and 138 HCs was used as primary cohort. Another one including 29 patients with MDD and 52 HCs was used as validation cohort. Functional and structural magnetic resonance images (MRI) were acquired to extract four types of features: functional connectivity (FC), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and gray matter volume (GMV). Then classifiers using different combinations among the four types of selected features were respectively built to discriminate patients from HCs. Different templates were applied and the results under different templates were compared. The classifier built with the combination of FC, ALFF, and GMV under the AAL template discriminated patients from HCs with the best performance (AUC=0.916, ACC=84.8%). The regions selected in all the different templates were mainly located in the default mode network, affective network, prefrontal cortex. First, the sample size of the validation cohort was limited. Second, diffusion tensor imaging data were not collected. The performance of classifier was improved by using multi-modal MRI imaging. Different templates would be suitable for different types of analysis. The regions selected in all the different templates are possibly the core regions to investigate the pathophysiology of MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll发布了新的文献求助20
1秒前
一一发布了新的文献求助10
2秒前
李健的小迷弟应助周周周采纳,获得10
2秒前
4秒前
李国民发布了新的文献求助20
5秒前
卢丹丹发布了新的文献求助10
5秒前
NexusExplorer应助..采纳,获得10
5秒前
棠真应助yiruwang采纳,获得10
6秒前
安静的大白菜完成签到,获得积分20
8秒前
桐桐应助飞飞飞采纳,获得10
9秒前
Fine完成签到,获得积分10
9秒前
10秒前
liudongjun发布了新的文献求助10
11秒前
11秒前
nenoaowu发布了新的文献求助10
12秒前
韩霖发布了新的文献求助10
14秒前
15秒前
兴奋的乐巧完成签到,获得积分10
17秒前
yangican发布了新的文献求助20
17秒前
17秒前
李健的小迷弟应助cili采纳,获得10
17秒前
JamesPei应助123采纳,获得10
18秒前
zzqx完成签到 ,获得积分10
19秒前
cyn0762完成签到,获得积分10
19秒前
20秒前
simply完成签到 ,获得积分10
20秒前
小马甲应助sunzhuxi采纳,获得10
21秒前
liudongjun完成签到,获得积分10
21秒前
21秒前
22秒前
科研通AI5应助侃侃采纳,获得10
22秒前
爆米花应助完美的火采纳,获得10
23秒前
Ruyii应助nenoaowu采纳,获得30
24秒前
25秒前
刘桑桑发布了新的文献求助10
25秒前
DYYDYY发布了新的文献求助10
25秒前
ma完成签到 ,获得积分10
26秒前
简单的卿完成签到,获得积分10
26秒前
所所应助LHL采纳,获得10
27秒前
顾矜应助GQL采纳,获得10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818939
求助须知:如何正确求助?哪些是违规求助? 3362015
关于积分的说明 10414983
捐赠科研通 3080315
什么是DOI,文献DOI怎么找? 1694152
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768337