神经形态工程学
记忆电阻器
纳米团簇
材料科学
还原(数学)
星团(航天器)
混溶性
无定形固体
线性
电导
计算机科学
纳米技术
光电子学
拓扑(电路)
人工神经网络
物理
电子工程
化学
电气工程
凝聚态物理
聚合物
数学
人工智能
复合材料
工程类
有机化学
程序设计语言
几何学
作者
Jaehyun Kang,Tae-Yoon Kim,Suman Hu,Jaewook Kim,Joon Young Kwak,Jongkil Park,Jong‐Keuk Park,Inho Kim,Suyoun Lee,Sang‐Bum Kim,YeonJoo Jeong
标识
DOI:10.1038/s41467-022-31804-4
摘要
Abstract Memristors, or memristive devices, have attracted tremendous interest in neuromorphic hardware implementation. However, the high electric-field dependence in conventional filamentary memristors results in either digital-like conductance updates or gradual switching only in a limited dynamic range. Here, we address the switching parameter, the reduction probability of Ag cations in the switching medium, and ultimately demonstrate a cluster-type analogue memristor. Ti nanoclusters are embedded into densified amorphous Si for the following reasons: low standard reduction potential, thermodynamic miscibility with Si, and alloy formation with Ag. These Ti clusters effectively induce the electrochemical reduction activity of Ag cations and allow linear potentiation/depression in tandem with a large conductance range (~244) and long data retention (~99% at 1 hour). Moreover, according to the reduction potentials of incorporated metals (Pt, Ta, W, and Ti), the extent of linearity improvement is selectively tuneable. Image processing simulation proves that the Ti 4.8% :a-Si device can fully function with high accuracy as an ideal synaptic model.
科研通智能强力驱动
Strongly Powered by AbleSci AI