Identification of T cell-related biomarkers for breast cancer based on weighted gene co-expression network analysis

乳腺癌 基因 生物 免疫疗法 癌症 CD8型 人类白细胞抗原 基因表达谱 基因表达 恶性肿瘤 计算生物学 癌症研究 免疫系统 遗传学 抗原
作者
Zhenkai Ye
出处
期刊:Journal of Chemotherapy [Informa]
卷期号:35 (4): 298-306 被引量:4
标识
DOI:10.1080/1120009x.2022.2097431
摘要

Breast cancer is the most frequent malignancy worldwide, with immunotherapy and targeted therapy being key strategies to improving the prognosis. We downloaded mRNA expression dataset of breast cancer from The Cancer Genome Atlas (TCGA) database, and divided preprocessed genes into 12 modules based on gene expression profile by weighted gene co-expression network analysis (WGCNA). The StromalScore, ImmuneScore and ESTIMATEScore of samples were assessed. The Kaplan-Meier curve showed that ImmuneScore was notably correlated with breast cancer patient's prognosis. By analyzing the connectivity between module eigengenes and clinical traits, the gene module closely related to ImmuneScore was obtained. Further, through intramodular gene connectivity and protein-protein interaction network topology analysis of module genes, hub genes (HLA-E, HLA-DPB1 and HLA-DRB1) in immune-related module were screened out. Finally, bioinformatics analysis displayed that HLA-DPB1 and HLA-DRB1 were notably overexpressed and HLA-E was underexpressed in breast cancer tissues. TIMER database analysis showed that three hub gene levels were significantly correlated with infiltration levels of CD8+ T cells and CD4+ T cells. Meanwhile, Pearson correlation analysis revealed positive correlation between three hub genes and those of immune checkpoint genes (LAG3, PD-1, PD-L1). Additionally, prognosis could be effectively evaluated by HLA-DPB1 and HLA-DRB1 levels, and differentially activated signalling pathways between high- and low-expression groups of HLA-E and HLA-DPB1 were obtained by gene set enrichment analysis. To conclude, this study identified three T cell-related biomarkers for breast cancer based on TCGA-BRCA dataset, and the screened genes could provide references for breast cancer immunotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助木偶人采纳,获得10
刚刚
上上签完成签到,获得积分10
1秒前
1秒前
1秒前
111发布了新的文献求助10
2秒前
江野完成签到,获得积分20
2秒前
2秒前
烧麦专家发布了新的文献求助10
3秒前
3秒前
星辰大海应助机智的梨愁采纳,获得10
3秒前
张东发布了新的文献求助10
3秒前
4秒前
乐乐应助wzz采纳,获得10
4秒前
月亮发布了新的文献求助20
4秒前
4秒前
孟器发布了新的文献求助150
5秒前
cuigao发布了新的文献求助10
5秒前
cc完成签到,获得积分10
5秒前
完美世界应助几欢采纳,获得10
5秒前
传奇3应助龟仙人采纳,获得10
5秒前
成就土豆发布了新的文献求助10
6秒前
李健的小迷弟应助刘正阳采纳,获得10
6秒前
燕子发布了新的文献求助10
6秒前
Lengbo完成签到,获得积分10
7秒前
Alisa发布了新的文献求助10
8秒前
西鱼完成签到,获得积分10
8秒前
爆米花应助老刀采纳,获得10
9秒前
句号完成签到,获得积分10
9秒前
9秒前
BINGBING1230发布了新的文献求助10
9秒前
10秒前
尼尔朵龙拉应助后撤步7777采纳,获得10
10秒前
江野发布了新的文献求助30
11秒前
samu发布了新的文献求助10
11秒前
青山完成签到,获得积分10
12秒前
12秒前
12秒前
可爱的函函应助asqw采纳,获得30
12秒前
12秒前
大模型应助cuigao采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5362300
求助须知:如何正确求助?哪些是违规求助? 4492165
关于积分的说明 13986052
捐赠科研通 4395354
什么是DOI,文献DOI怎么找? 2414509
邀请新用户注册赠送积分活动 1407276
关于科研通互助平台的介绍 1381841