Preparation of size-controlled all-lignin based carbon nanospheres and their electrochemical performance in supercapacitor

碳化 超级电容器 材料科学 微观结构 电容 碳纤维 木质素 化学工程 电极 纳米技术 复合材料 有机化学 化学 扫描电子显微镜 物理化学 工程类 复合数
作者
Hang Wang,Fuquan Xiong,Jia-Mei Yang,Bole Ma,Yan Qing,Fuxiang Chu,Yiqiang Wu
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:179: 114689-114689 被引量:25
标识
DOI:10.1016/j.indcrop.2022.114689
摘要

Lignin, as the second most abundant biomass material in nature, is regarded as an ideal carbon precursor due to the presence of a larger amount of aromatic ring structural unit. Carbon nanospheres, as one of the vital members of carbon materials, are promising advanced materials for various areas. However, lignin-based carbon spheres suffered a complex fabrication process, high crosslinking between spheres, and non-adjustable micron size. Here, all-lignin based carbon nanospheres (LCNS) with tunable size and microstructure were prepared via self-assembly, stabilization treatment, and carbonization. Subsequently, their applications in supercapacitor electrode material were investigated. The results showed that the monodispersed, ordered, and regular carbon nanospheres could be constructed. The size of LCNS could be tuned ranging from 256 to 416 nm via changing the initial concentration of lignin between 0.5 and 2 mg mL−1. The as-prepared LCNS provided a specific surface area between 652 and 736 m2 g−1 through adjusting the size and microstructure. When the LCNS was assembled into the electrochemical capacitor, the LCNS electrode materials exhibited a high specific capacitance of 147 F g−1. Additionally, the LCNS-based symmetrical capacitor showed an ultralow characteristic relaxation time (0.86 s) and long cycle stability for 10,000 cycles. The capacitance properties could be regulated via reconciling the size of nanospheres and microstructure induced by carbonization temperature. The governable capacitance performance indicates that the as-prepared LCNS should be a promising candidate material for energy storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顺利白柏完成签到,获得积分10
3秒前
睡不醒发布了新的文献求助30
7秒前
8秒前
小石头完成签到,获得积分10
10秒前
Jasper应助Ar采纳,获得10
12秒前
15秒前
汉堡包应助无数次呐喊采纳,获得10
15秒前
DreamLly完成签到,获得积分10
16秒前
斯文败类应助122采纳,获得10
16秒前
儒雅老头完成签到,获得积分10
17秒前
奔鱼发布了新的文献求助10
18秒前
19秒前
小哈完成签到,获得积分10
22秒前
cctv18应助活力以冬采纳,获得10
24秒前
Yizuo发布了新的文献求助20
25秒前
Nature完成签到,获得积分10
25秒前
25秒前
MMMM_X发布了新的文献求助10
26秒前
睡不醒完成签到,获得积分20
27秒前
30秒前
30秒前
34秒前
35秒前
Dudu发布了新的文献求助10
35秒前
有趣的灵魂完成签到,获得积分10
36秒前
37秒前
38秒前
41秒前
sally发布了新的文献求助30
42秒前
LuoYang发布了新的文献求助10
42秒前
43秒前
俏皮的语芹发布了新的文献求助200
44秒前
46秒前
46秒前
50秒前
51秒前
homer发布了新的文献求助10
51秒前
云云云完成签到,获得积分10
51秒前
在水一方应助Yizuo采纳,获得10
54秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Epilepsy: A Comprehensive Textbook 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2472208
求助须知:如何正确求助?哪些是违规求助? 2138412
关于积分的说明 5449512
捐赠科研通 1862294
什么是DOI,文献DOI怎么找? 926116
版权声明 562752
科研通“疑难数据库(出版商)”最低求助积分说明 495352