Depressioner: Facial dynamic representation for automatic depression level prediction

计算机科学 图形 联营 人工智能 卷积(计算机科学) 模式识别(心理学) 频道(广播) 块(置换群论) 邻接表 张量(固有定义) 数学 理论计算机科学 算法 人工神经网络 组合数学 计算机网络 纯数学
作者
Mingyue Niu,Lang He,Ya Li,Bin Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:204: 117512-117512 被引量:18
标识
DOI:10.1016/j.eswa.2022.117512
摘要

Physiological studies have shown that facial changes can be seen as a biomarker to analyze the severity of depression. Therefore, this study proposes a Depressioner model to predict the depression level by examining facial changes. Our method is mainly to solve two problems in the previous works: (1) each channel in the tensor obtained by the convolution layer can be regarded as a pattern extraction result related to depression. However, previous works rarely explore the relationship among channels, which is limited in integrating the advantages of various channels; (2) the average (or max) pooling is often used to vectorize the tensor, which is not conduction to capturing the depression cues from tensors with temporal attribute. To this end, this study designs two novel blocks namely Graph Convolution Embedding (GCE) block and Multi-Scale Vectorization (MSV) block. The GCE block treats each channel as a node in the graph and constructs the corresponding adjacency matrix. Furthermore, the GCE block adopts the graph convolution operation to examine the relationship among channels to take advantage of each channel and highlight useful elements. The MSV block combines the dilated convolution and attention mechanism to process each channel to extract the multi-scale representation of depression cues along temporal dimension. Moreover, it aggregates these representations into the vectorization result of tensor along channel dimension. Experimental results on AVEC 2013 (RMSE = 7.49, MAE = 6.12) and AVEC 2014 (RMSE = 7.56, MAE = 6.01) depression databases illustrate the effectiveness of our method, which may promote the auxiliary diagnosis of depression screening in the future. Meanwhile, these results also show that the proposed Depressioner model can capture the differences of facial changes among individuals with different depression levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Luoller发布了新的文献求助10
1秒前
1秒前
恶恶么v完成签到,获得积分10
3秒前
懦弱的山柳完成签到 ,获得积分10
3秒前
puhong zhang完成签到,获得积分10
5秒前
7秒前
科研通AI5应助杨杨采纳,获得10
7秒前
桐桐应助SciGo采纳,获得10
7秒前
张佳明发布了新的文献求助30
8秒前
CodeCraft应助帝国之刃采纳,获得10
8秒前
8秒前
李健应助晓梦采纳,获得10
8秒前
晓晓发布了新的文献求助10
10秒前
yolanda_ji完成签到 ,获得积分10
11秒前
xinyue发布了新的文献求助10
11秒前
woreaixuexi完成签到,获得积分10
13秒前
爱静静应助轻雨采纳,获得10
13秒前
16秒前
研友_ZlxBXZ完成签到,获得积分10
17秒前
知性的冰棍完成签到,获得积分10
20秒前
SciGo发布了新的文献求助10
20秒前
整齐凝竹完成签到 ,获得积分10
20秒前
晓晓完成签到,获得积分10
21秒前
跋山涉水的巫师给跋山涉水的巫师的求助进行了留言
25秒前
欧巴拉吧发布了新的文献求助20
25秒前
竹筏过海应助Wish采纳,获得50
27秒前
27秒前
jenningseastera应助LDDDGR采纳,获得30
28秒前
叭叭完成签到,获得积分10
28秒前
零度寂寞3166完成签到,获得积分10
29秒前
zzdd发布了新的文献求助20
31秒前
棠堂发布了新的文献求助10
32秒前
11完成签到,获得积分10
33秒前
布布完成签到,获得积分10
37秒前
SciGo完成签到,获得积分10
38秒前
Amber-GXY发布了新的文献求助30
39秒前
40秒前
40秒前
yyyyxxxg完成签到,获得积分10
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803788
求助须知:如何正确求助?哪些是违规求助? 3348592
关于积分的说明 10339483
捐赠科研通 3064770
什么是DOI,文献DOI怎么找? 1682762
邀请新用户注册赠送积分活动 808409
科研通“疑难数据库(出版商)”最低求助积分说明 764096