Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT image

增采样 分割 人工智能 模式识别(心理学) 医学 计算机科学 联营 计算机视觉 图像(数学)
作者
S. Akila Agnes,J. Anitha
出处
期刊:Journal of medical imaging [SPIE]
卷期号:9 (05) 被引量:1
标识
DOI:10.1117/1.jmi.9.5.052402
摘要

Purpose: Segmentation of lung nodules in chest CT images is essential for image-driven lung cancer diagnosis and follow-up treatment planning. Manual segmentation of lung nodules is subjective because the approach depends on the knowledge and experience of the specialist. We proposed a multiscale fully convolutional three-dimensional UNet (MF-3D UNet) model for automatic segmentation of lung nodules in CT images. Approach: The proposed model employs two strategies, fusion of multiscale features with Maxout aggregation and trainable downsampling, to improve the performance of nodule segmentation in 3D CT images. The fusion of multiscale (fine and coarse) features with the Maxout function allows the model to retain the most important features while suppressing the low-contribution features. The trainable downsampling process is used instead of fixed pooling-based downsampling. Results: The performance of the proposed MF-3D UNet model is examined by evaluating the model with CT scans obtained from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset. A quantitative and visual comparative analysis of the proposed work with various customized UNet models is also presented. The comparative analysis shows that the proposed model yields reliable segmentation results compared with other methods. The experimental result of 3D MF-UNet shows encouraging results in the segmentation of different types of nodules, including juxta-pleural, solitary pulmonary, and non-solid nodules, with an average Dice similarity coefficient of 0.83±0.05 , and it outperforms other CNN-based segmentation models. Conclusions: The proposed model accurately segments the nodules using multiscale feature aggregation and trainable downsampling approaches. Also, 3D operations enable precise segmentation of complex nodules using inter-slice connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
net80yhm发布了新的文献求助30
刚刚
李健的小迷弟应助rqy采纳,获得10
2秒前
YaliLi发布了新的文献求助20
3秒前
Hello应助含糊采纳,获得10
3秒前
忧虑的绮梅完成签到,获得积分10
3秒前
Li完成签到,获得积分20
4秒前
Akim应助药小博采纳,获得10
4秒前
天天快乐应助li采纳,获得10
5秒前
5秒前
6秒前
李爱国应助yelis采纳,获得10
6秒前
打打应助沉默的金鱼采纳,获得10
6秒前
研友_P85MX8发布了新的文献求助10
9秒前
逍遥猪皮完成签到,获得积分10
10秒前
自信鑫鹏完成签到,获得积分10
10秒前
活泼忆丹完成签到,获得积分10
10秒前
yhhhhhhh2024完成签到,获得积分10
10秒前
11秒前
rqy完成签到,获得积分10
11秒前
ablesic.rong完成签到,获得积分10
12秒前
ikun完成签到,获得积分10
12秒前
零零发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
li完成签到,获得积分10
16秒前
风中夜天完成签到 ,获得积分10
17秒前
17秒前
顺利的飞荷完成签到,获得积分0
18秒前
yelis发布了新的文献求助10
18秒前
li发布了新的文献求助10
18秒前
19秒前
小新发布了新的文献求助10
20秒前
21秒前
hatoyama发布了新的文献求助10
24秒前
25秒前
25秒前
药小博发布了新的文献求助10
26秒前
深情安青应助夏冰倩采纳,获得10
26秒前
吉吉发布了新的文献求助10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800444
求助须知:如何正确求助?哪些是违规求助? 3345694
关于积分的说明 10326773
捐赠科研通 3062182
什么是DOI,文献DOI怎么找? 1680897
邀请新用户注册赠送积分活动 807268
科研通“疑难数据库(出版商)”最低求助积分说明 763572