(Invited) Modeling of Lithium Plating Induced By Heterogeneities at Varied Length-Scales in Lithium-Ion Batteries

电解质 电极 电镀(地质) 材料科学 离子 锂(药物) 分离器(采油) 化学 热力学 有机化学 地球物理学 地质学 医学 物理 物理化学 内分泌学
作者
Kandler Smith,François Usseglio-Viretta,Andrew M. Colclasure,Weijie Mai,Aashutosh Mistry,Partha P. Mukherjee,Shriram Santhanagopalan,Matthew Keyser
出处
期刊:Meeting abstracts 卷期号:MA2019-01 (22): 1136-1136
标识
DOI:10.1149/ma2019-01/22/1136
摘要

Lithium (Li) plating is an unsafe, damaging side reaction that can occur during fast and/or low temperature charging of Li-ion batteries. The bulk driving force for Li plating is well understood. The side reaction becomes thermodynamically favorable when the negative electrode solid phase potential becomes less than the electrolyte phase potential. For today’s energy-dense batteries with thick electrodes, electrolyte Li + transport limitations at high charge rates can lead to plating. High charge rates cause electrolyte salt depletion in the back of the negative electrode, shutting down reaction current there and causing excessive reaction current and plating at the electrode front. Pseudo 2D (P2D) macro-homogeneous models mathematically quantify the bulk onset of plating at the front of the negative electrode where it interfaces the separator. In practice however, Li does not plate uniformly across the entire negative electrode front. Instead, there are preferential regions where plating first occurs due to heterogeneities, sometimes at electrode edges, sometimes at the cell center and other times in seemingly random locations. Heterogeneous plating occurs earlier than the homogeneous P2D model predicts thus making it important to understand heterogeneities in order to achieve faster charge rates. Here we review known heterogeneities in Li-ion batteries and mathematical models that quantify their contribution to Li plating. Heterogeneities arise at all length scales of the battery, ranging from graphite crystal grain orientation at the sub-micron scale to meter-scale temperature distributions across large format cells and packs. Some heterogeneities such as edge effects are easy to avoid in design. To compensate for 2D transport effects as well as inevitable slight misalignment in an electrode stack for example, the negative electrode must overhang the positive electrode, typically by 0.5 to 1.0 mm. And in cases where the electrode stack is wetted with excess liquid electrolyte at its edges, the separator must further overhang the electrodes to prevent a preferential ion transport path through the free liquid electrolyte that may short-circuit the normal path through the separator. Other heterogeneities are not entirely possible to avoid and must be understood to quantify conservatism needed when setting fast charging limits. Using optical cell experiments and various modeling techniques, Harris 1 and Thomas-Alyea 2 have both shown preferential nucleation and reaction occurring due to graphite crystal anisotropy, particle-to-particle contact resistance and particle size/morphology differences. Complementing their previous analysis, we show results from a 3D microstructure model capturing early plating onset due to size/morphology effects across a 40-μm field of view. At a slightly larger length scale, local porosity and tortuosity variations caused by an inhomogeneous electrode coating can also lead to early onset of Li plating. We show a mesoscale model quantifies early onset of Li-plating at an approximately 50-μm diameter region of a 300x300 μm 2 electrode plate area. The micro and mesoscale model domains are based on electrode 3D geometries obtained with computed tomography experiments. In large format cells, temperature, pressure and current collector potential gradients cause heterogeneous cell utilization that also leads to early onset of Li plating. A multi-scale multi-domain (MSMD) cell model provides examples of these cell-scale heterogeneities and their impact. Comparing magnitude of heterogeneities across the varied length scales, we comment on design of Li-battery materials, electrodes and cells to best suppress heterogeneity-driven Li plating. References K.E. Thomas-Alyea, C. Jung, R.B. Smith, M.Z. Bazant, “In Situ Observation and Mathematical Modeling of Lithium Distribution within Graphite,” J. Echem. Soc. 164 (11) E3063-E3072 (2017). S.J. Harris, E.K. Rahani, V.B. Shenoy, “Direct In Situ Observation and Numerical Simulations of Non-Shrinking-Core Behavior in an MCMB Graphite Composite Electrode,” J. Echem. Soc., 159 (9) A1501-A1507 (2012). G.-H. Kim, K. Smith, J. Lawrence-Simon, C. Yang, “Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD,” J. Echem. Soc., A1076-88 (2017).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助keigo采纳,获得10
刚刚
雨田发布了新的文献求助10
1秒前
友好电话发布了新的文献求助10
4秒前
xrkxrk完成签到 ,获得积分10
4秒前
冰冰宝发布了新的文献求助10
6秒前
7秒前
HDY完成签到,获得积分10
7秒前
8秒前
麈儁完成签到,获得积分10
8秒前
隐形曼青应助luopengdong采纳,获得10
8秒前
8秒前
ytg922完成签到,获得积分10
9秒前
苏愚志完成签到,获得积分10
10秒前
饕餮完成签到,获得积分10
10秒前
10秒前
ironsilica完成签到,获得积分10
10秒前
10秒前
11秒前
秋海棠完成签到,获得积分10
11秒前
杰瑞完成签到,获得积分10
12秒前
13秒前
13秒前
辞欢发布了新的文献求助10
13秒前
百卒完成签到,获得积分10
13秒前
14秒前
关山月完成签到 ,获得积分10
15秒前
15秒前
keigo发布了新的文献求助10
16秒前
Jaden完成签到,获得积分10
16秒前
18秒前
lalala完成签到,获得积分10
18秒前
18秒前
keen完成签到,获得积分10
19秒前
加载文献别卡了完成签到,获得积分10
19秒前
张老师发布了新的文献求助10
19秒前
gjww应助第9527号文明采纳,获得10
20秒前
21秒前
21秒前
21秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
薩提亞模式團體方案對青年情侶輔導效果之研究 400
3X3 Basketball: Everything You Need to Know 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2387766
求助须知:如何正确求助?哪些是违规求助? 2094296
关于积分的说明 5271975
捐赠科研通 1821016
什么是DOI,文献DOI怎么找? 908378
版权声明 559289
科研通“疑难数据库(出版商)”最低求助积分说明 485288