Industrial internet of things and unsupervised deep learning enabled real-time occupational safety monitoring in cold storage warehouse

可追溯性 计算机科学 计算机安全 工程类 软件工程
作者
Xuegang Zhan,Wei Wu,Leidi Shen,Wangyunyan Liao,Zhiheng Zhao,Jing Xia
出处
期刊:Safety Science [Elsevier BV]
卷期号:152: 105766-105766 被引量:44
标识
DOI:10.1016/j.ssci.2022.105766
摘要

Occupational safety and health (OSH) has always been a big concern in the labor-intensive warehouse industry, especially under peculiar circumstances like a low temperature. Accordingly, this paper aims to propose a framework of a smart system using the Industrial Internet of Things (IIoT) and digital twin (DT) technologies to realize real-time occupational safety monitoring in the warehouse and ensure synchronized cyber-physical spaces for information traceability and visibility. The unsupervised deep neural structure of stacked auto-encoder (SAE) is designed to identify abnormal stationary from human motion status, which is perceived as a sign of potential accident. The model is developed to automatically update online by cooperating with calibration samples so as to keep in accordance with the evolution of surroundings. The Bluetooth low energy (BLE) and a log-distance path loss model are used to fulfill indoor localization in order for managers to promptly respond to an incident on site. Besides, some intelligent services are enabled to promote the efficiency of safety management. A real-life case study is carried out in an air cargo cold storage warehouse to illustrate the viability and rationality of the proposed system and methods. The elaboration of the implementation is envisioned to facilitate replication and reproduction effectively. The impact of learning features concerned with distance and vibration on the performance of anomaly detection has also been analyzed by experiments. The insights and lessons gained in this study hold the promise of providing a reference or sparking new ideas for researchers and practitioners to meet similar needs in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
跳跃的电话完成签到,获得积分10
1秒前
Selena完成签到 ,获得积分10
2秒前
wangjuan发布了新的文献求助10
2秒前
彩色的德地完成签到,获得积分10
6秒前
6秒前
nn发布了新的文献求助10
6秒前
papa发布了新的文献求助20
8秒前
NexusExplorer应助Arueliano采纳,获得10
8秒前
hh完成签到,获得积分10
9秒前
老实寒云发布了新的文献求助10
10秒前
12秒前
李李李李李完成签到,获得积分10
12秒前
voyager完成签到,获得积分10
12秒前
yy发布了新的文献求助10
16秒前
小背包完成签到 ,获得积分10
16秒前
19秒前
Souliko完成签到,获得积分10
25秒前
死生长叹完成签到 ,获得积分10
27秒前
科研通AI5应助科研通管家采纳,获得30
33秒前
back you up应助科研通管家采纳,获得30
34秒前
back you up应助科研通管家采纳,获得30
34秒前
深情安青应助科研通管家采纳,获得10
34秒前
大模型应助科研通管家采纳,获得10
34秒前
酷波er应助科研通管家采纳,获得10
34秒前
上官若男应助科研通管家采纳,获得10
34秒前
英俊的铭应助科研通管家采纳,获得10
34秒前
汉堡包应助科研通管家采纳,获得10
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
SciGPT应助科研通管家采纳,获得10
34秒前
赘婿应助科研通管家采纳,获得30
34秒前
丘比特应助科研通管家采纳,获得10
34秒前
燕子完成签到,获得积分10
36秒前
38秒前
007完成签到,获得积分10
39秒前
wy.he应助SOBER采纳,获得10
45秒前
rrrrlc发布了新的文献求助10
45秒前
小巧曼冬发布了新的文献求助20
46秒前
wangsiyuan完成签到 ,获得积分10
46秒前
Ava应助燕子采纳,获得10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776445
求助须知:如何正确求助?哪些是违规求助? 3321879
关于积分的说明 10208141
捐赠科研通 3037221
什么是DOI,文献DOI怎么找? 1666605
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872