标题 |
![]() 利用跨模态内容相关性改进多模态假新闻检测
相关领域
情态动词
相关性
计算机科学
内容(测量理论)
互相关
语音识别
人工智能
统计
数学
材料科学
数学分析
几何学
高分子化学
|
网址 | |
DOI | |
其它 | The widespread presence of multimodal fake news on social media platforms has severely impacted public order, making the automatic detection and filtering of such content a pressing issue. Although existing studies have attempted to integrate multimodal data for this task, they often struggle to effectively model cross-modal correlations. Most approaches focus on the global features of each modality and compute scalar similarities, which limits their capacity to learn and process comprehensive samples. To address this challenge, this paper introduces a novel cross-modal content correlation network. This method leverages salient objects from images and nouns from the text as the multimodal content, utilizing CLIP to extract generalizable features for similarity measurement, thereby enhancing cross-modal interaction. By applying convolution to the similarity matrix between nouns and image crops, |
求助人 | |
下载 | 求助已完成,仅限求助人下载。 |
温馨提示:该文献已被科研通 学术中心 收录,前往查看
科研通『学术中心』是文献索引库,收集文献的基本信息(如标题、摘要、期刊、作者、被引量等),不提供下载功能。如需下载文献全文,请通过文献求助获取。
|