Physics-informed neural network combined with characteristic-based split for solving Navier–Stokes equations

反向传播 人工神经网络 计算机科学 边值问题 边界(拓扑) 应用数学 趋同(经济学) 流量(数学) 数学优化 算法 人工智能 数学 数学分析 几何学 经济 经济增长
作者
Shuang Hu,Meiqin Liu,Senlin Zhang,Shanling Dong,Ronghao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107453-107453 被引量:2
标识
DOI:10.1016/j.engappai.2023.107453
摘要

This paper presents a novel approach for solving the shallow-water transport equation using a physics-informed neural network (PINN) combined with characteristic-based split (CBS). Our method separates the variables, so it is no need to consider the weight coefficients between different loss functions. As not all partial derivatives are involved in the gradient backpropagation, our method can save half of the memory occupation without losing accuracy, and resulting in a significant reduction in computation time compared to traditional PINN. We solving the progress of the dispersion of hot water under known flow fields. Furthermore, we propose a boundary condition that accounts for the second-order partial derivative term, which is more appropriate for solving the diffusion equation with open domains than the commonly used assumption of zero boundary values. Our numerical results demonstrate that this boundary condition leads to improved convergence of the network. In addition, we introduce a parameter estimation method to estimate the diffusion coefficient of hot water flow, which requires information from the field at only two different times. We observe that excessive participation of variables in gradient backpropagation can lead to neural networks getting trapped in local optima. We use PINN combined with CBS method to solve 3-D incompressible flow. As the number of variables involved in gradient backpropagation increases, the accuracy of the solution decreases, which can partially support our viewpoint. The source codes for the numerical examples in this work are available at https://github.com/double110/PINN-cbs-.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111完成签到 ,获得积分20
刚刚
3秒前
4秒前
木风落完成签到,获得积分10
7秒前
邓佳鑫Alan应助QSJ采纳,获得10
8秒前
thousand发布了新的文献求助10
9秒前
9秒前
人生多错过完成签到,获得积分10
10秒前
852应助赵银志采纳,获得10
11秒前
lhj发布了新的文献求助200
12秒前
yuqinghui98发布了新的文献求助10
14秒前
斯文败类应助加美希尔采纳,获得10
18秒前
18秒前
qcwindchasing完成签到 ,获得积分10
20秒前
jj发布了新的文献求助10
24秒前
绿波电龙完成签到,获得积分10
28秒前
能能完成签到,获得积分10
28秒前
29秒前
29秒前
何求完成签到,获得积分10
29秒前
黑粉头头完成签到,获得积分10
30秒前
32秒前
充电宝应助和谐诗柳采纳,获得10
34秒前
加美希尔发布了新的文献求助10
34秒前
35秒前
36秒前
二三语逢山外山完成签到 ,获得积分10
37秒前
37秒前
昏睡的蟠桃应助xu采纳,获得50
38秒前
nnnnn完成签到 ,获得积分10
40秒前
雨中漫步完成签到,获得积分10
40秒前
懿桉发布了新的文献求助10
42秒前
43秒前
wzy发布了新的文献求助10
43秒前
45秒前
玩命的十三完成签到 ,获得积分10
45秒前
45秒前
46秒前
加美希尔完成签到,获得积分10
48秒前
聪明平灵发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761753
求助须知:如何正确求助?哪些是违规求助? 3305518
关于积分的说明 10134626
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751