Physics-informed neural network combined with characteristic-based split for solving Navier–Stokes equations

反向传播 人工神经网络 计算机科学 边值问题 边界(拓扑) 应用数学 趋同(经济学) 流量(数学) 数学优化 算法 人工智能 数学 数学分析 几何学 经济增长 经济
作者
Shuang Hu,Meiqin Liu,Senlin Zhang,Shanling Dong,Ronghao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107453-107453 被引量:2
标识
DOI:10.1016/j.engappai.2023.107453
摘要

This paper presents a novel approach for solving the shallow-water transport equation using a physics-informed neural network (PINN) combined with characteristic-based split (CBS). Our method separates the variables, so it is no need to consider the weight coefficients between different loss functions. As not all partial derivatives are involved in the gradient backpropagation, our method can save half of the memory occupation without losing accuracy, and resulting in a significant reduction in computation time compared to traditional PINN. We solving the progress of the dispersion of hot water under known flow fields. Furthermore, we propose a boundary condition that accounts for the second-order partial derivative term, which is more appropriate for solving the diffusion equation with open domains than the commonly used assumption of zero boundary values. Our numerical results demonstrate that this boundary condition leads to improved convergence of the network. In addition, we introduce a parameter estimation method to estimate the diffusion coefficient of hot water flow, which requires information from the field at only two different times. We observe that excessive participation of variables in gradient backpropagation can lead to neural networks getting trapped in local optima. We use PINN combined with CBS method to solve 3-D incompressible flow. As the number of variables involved in gradient backpropagation increases, the accuracy of the solution decreases, which can partially support our viewpoint. The source codes for the numerical examples in this work are available at https://github.com/double110/PINN-cbs-.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
yar完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
蓝天发布了新的文献求助10
7秒前
小明应助香香的臭宝采纳,获得10
7秒前
7秒前
li完成签到,获得积分10
7秒前
舒心安柏完成签到 ,获得积分10
7秒前
在水一方应助fff采纳,获得10
7秒前
天一发布了新的文献求助10
7秒前
luodaxia完成签到,获得积分10
8秒前
9秒前
10秒前
Panpan完成签到,获得积分10
10秒前
李一一发布了新的文献求助10
10秒前
13秒前
Bian完成签到,获得积分10
13秒前
13秒前
cc应助li采纳,获得10
14秒前
en关注了科研通微信公众号
14秒前
doudou发布了新的文献求助10
14秒前
wenchong完成签到,获得积分10
14秒前
15秒前
酷波er应助佩奇采纳,获得10
16秒前
18秒前
Lucy发布了新的文献求助10
19秒前
眠羊完成签到,获得积分10
20秒前
21秒前
21秒前
完美世界应助lcj采纳,获得10
21秒前
23秒前
sober完成签到,获得积分10
23秒前
ZQ发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685075
求助须知:如何正确求助?哪些是违规求助? 5040461
关于积分的说明 15186056
捐赠科研通 4844120
什么是DOI,文献DOI怎么找? 2597144
邀请新用户注册赠送积分活动 1549728
关于科研通互助平台的介绍 1508186