Physics-informed neural network combined with characteristic-based split for solving Navier–Stokes equations

反向传播 人工神经网络 计算机科学 边值问题 边界(拓扑) 应用数学 趋同(经济学) 流量(数学) 数学优化 算法 人工智能 数学 数学分析 几何学 经济增长 经济
作者
Shuang Hu,Meiqin Liu,Senlin Zhang,Shanling Dong,Ronghao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107453-107453 被引量:2
标识
DOI:10.1016/j.engappai.2023.107453
摘要

This paper presents a novel approach for solving the shallow-water transport equation using a physics-informed neural network (PINN) combined with characteristic-based split (CBS). Our method separates the variables, so it is no need to consider the weight coefficients between different loss functions. As not all partial derivatives are involved in the gradient backpropagation, our method can save half of the memory occupation without losing accuracy, and resulting in a significant reduction in computation time compared to traditional PINN. We solving the progress of the dispersion of hot water under known flow fields. Furthermore, we propose a boundary condition that accounts for the second-order partial derivative term, which is more appropriate for solving the diffusion equation with open domains than the commonly used assumption of zero boundary values. Our numerical results demonstrate that this boundary condition leads to improved convergence of the network. In addition, we introduce a parameter estimation method to estimate the diffusion coefficient of hot water flow, which requires information from the field at only two different times. We observe that excessive participation of variables in gradient backpropagation can lead to neural networks getting trapped in local optima. We use PINN combined with CBS method to solve 3-D incompressible flow. As the number of variables involved in gradient backpropagation increases, the accuracy of the solution decreases, which can partially support our viewpoint. The source codes for the numerical examples in this work are available at https://github.com/double110/PINN-cbs-.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cody完成签到,获得积分10
2秒前
aaa发布了新的文献求助10
2秒前
小白完成签到,获得积分10
3秒前
未来发布了新的文献求助10
3秒前
4秒前
调皮的巧凡完成签到,获得积分10
4秒前
吕志才发布了新的文献求助10
5秒前
5秒前
在水一方应助jj采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
jo完成签到,获得积分10
7秒前
7秒前
tengfei发布了新的文献求助10
8秒前
9秒前
10秒前
小夜子完成签到 ,获得积分10
10秒前
Herman完成签到 ,获得积分10
10秒前
Wdw2236发布了新的文献求助10
11秒前
夏xia完成签到 ,获得积分10
11秒前
鸡狗不如完成签到,获得积分20
11秒前
yuyu发布了新的文献求助10
12秒前
Lucky发布了新的文献求助10
13秒前
Akim应助0109采纳,获得10
13秒前
yoonkk完成签到,获得积分10
14秒前
共享精神应助如云之悠采纳,获得10
14秒前
充电宝应助刘豆豆采纳,获得10
14秒前
敏感的铃铛完成签到,获得积分10
15秒前
15秒前
Akim应助bowang采纳,获得10
15秒前
wzf发布了新的文献求助30
15秒前
狗子哥应助LjXiong采纳,获得10
16秒前
Cik完成签到,获得积分10
17秒前
机智小兔子应助Sharon采纳,获得40
17秒前
无极微光应助爱睡觉的鱼采纳,获得20
17秒前
Geodada完成签到,获得积分10
18秒前
18秒前
vz发布了新的文献求助10
18秒前
Lucky完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333