亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed neural network combined with characteristic-based split for solving Navier–Stokes equations

反向传播 人工神经网络 计算机科学 边值问题 边界(拓扑) 应用数学 趋同(经济学) 流量(数学) 数学优化 算法 人工智能 数学 数学分析 几何学 经济增长 经济
作者
Shuang Hu,Meiqin Liu,Senlin Zhang,Shanling Dong,Ronghao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107453-107453 被引量:2
标识
DOI:10.1016/j.engappai.2023.107453
摘要

This paper presents a novel approach for solving the shallow-water transport equation using a physics-informed neural network (PINN) combined with characteristic-based split (CBS). Our method separates the variables, so it is no need to consider the weight coefficients between different loss functions. As not all partial derivatives are involved in the gradient backpropagation, our method can save half of the memory occupation without losing accuracy, and resulting in a significant reduction in computation time compared to traditional PINN. We solving the progress of the dispersion of hot water under known flow fields. Furthermore, we propose a boundary condition that accounts for the second-order partial derivative term, which is more appropriate for solving the diffusion equation with open domains than the commonly used assumption of zero boundary values. Our numerical results demonstrate that this boundary condition leads to improved convergence of the network. In addition, we introduce a parameter estimation method to estimate the diffusion coefficient of hot water flow, which requires information from the field at only two different times. We observe that excessive participation of variables in gradient backpropagation can lead to neural networks getting trapped in local optima. We use PINN combined with CBS method to solve 3-D incompressible flow. As the number of variables involved in gradient backpropagation increases, the accuracy of the solution decreases, which can partially support our viewpoint. The source codes for the numerical examples in this work are available at https://github.com/double110/PINN-cbs-.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅的诗槐完成签到,获得积分10
13秒前
18秒前
笑点低的满天完成签到,获得积分10
19秒前
明理太君发布了新的文献求助10
24秒前
36秒前
李爱国应助明理太君采纳,获得10
37秒前
龚广山发布了新的文献求助10
43秒前
向日葵完成签到,获得积分10
48秒前
龚广山完成签到,获得积分10
53秒前
熬夜波比应助科研通管家采纳,获得10
55秒前
56秒前
57秒前
cijing完成签到,获得积分10
1分钟前
1分钟前
Mine完成签到,获得积分10
1分钟前
WAVE7222应助9527采纳,获得10
1分钟前
kukudou2完成签到,获得积分20
1分钟前
无敌橙汁oh完成签到 ,获得积分10
1分钟前
treasure完成签到 ,获得积分10
1分钟前
1分钟前
liliAnh完成签到 ,获得积分10
1分钟前
xingzai101完成签到,获得积分10
1分钟前
1分钟前
鱿鱼起司发布了新的文献求助10
1分钟前
时生完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助QQ采纳,获得30
2分钟前
S1mple完成签到,获得积分10
2分钟前
2分钟前
传奇3应助网安真难T_T采纳,获得10
2分钟前
Panther完成签到,获得积分10
2分钟前
ajing完成签到,获得积分10
2分钟前
熬夜波比应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
2分钟前
FashionBoy应助钱小豪采纳,获得10
3分钟前
田様应助魔丸本人采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5676687
求助须知:如何正确求助?哪些是违规求助? 4961982
关于积分的说明 15158502
捐赠科研通 4836285
什么是DOI,文献DOI怎么找? 2590794
邀请新用户注册赠送积分活动 1544367
关于科研通互助平台的介绍 1502156