Physics-informed neural network combined with characteristic-based split for solving Navier–Stokes equations

反向传播 人工神经网络 计算机科学 边值问题 边界(拓扑) 应用数学 趋同(经济学) 流量(数学) 数学优化 算法 人工智能 数学 数学分析 几何学 经济增长 经济
作者
Shuang Hu,Meiqin Liu,Senlin Zhang,Shanling Dong,Ronghao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107453-107453 被引量:2
标识
DOI:10.1016/j.engappai.2023.107453
摘要

This paper presents a novel approach for solving the shallow-water transport equation using a physics-informed neural network (PINN) combined with characteristic-based split (CBS). Our method separates the variables, so it is no need to consider the weight coefficients between different loss functions. As not all partial derivatives are involved in the gradient backpropagation, our method can save half of the memory occupation without losing accuracy, and resulting in a significant reduction in computation time compared to traditional PINN. We solving the progress of the dispersion of hot water under known flow fields. Furthermore, we propose a boundary condition that accounts for the second-order partial derivative term, which is more appropriate for solving the diffusion equation with open domains than the commonly used assumption of zero boundary values. Our numerical results demonstrate that this boundary condition leads to improved convergence of the network. In addition, we introduce a parameter estimation method to estimate the diffusion coefficient of hot water flow, which requires information from the field at only two different times. We observe that excessive participation of variables in gradient backpropagation can lead to neural networks getting trapped in local optima. We use PINN combined with CBS method to solve 3-D incompressible flow. As the number of variables involved in gradient backpropagation increases, the accuracy of the solution decreases, which can partially support our viewpoint. The source codes for the numerical examples in this work are available at https://github.com/double110/PINN-cbs-.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzm发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
歼击机88完成签到,获得积分10
3秒前
3秒前
3秒前
七妈完成签到,获得积分10
3秒前
YANG发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
南絮发布了新的文献求助10
4秒前
桐桐应助山丘采纳,获得10
4秒前
陶醉雪青发布了新的文献求助100
5秒前
5秒前
zdx发布了新的文献求助10
6秒前
Eileen发布了新的文献求助10
6秒前
6秒前
啊擦删除发布了新的文献求助10
7秒前
8秒前
独特冬莲发布了新的文献求助10
8秒前
小马甲应助111采纳,获得10
8秒前
9秒前
大胆的绮兰完成签到,获得积分10
9秒前
zgh5615发布了新的文献求助10
9秒前
10秒前
10秒前
科目三应助哲别采纳,获得10
11秒前
田様应助坦率的红花采纳,获得10
11秒前
脑洞疼应助郭郭郭采纳,获得10
11秒前
DQY发布了新的文献求助10
11秒前
sty发布了新的文献求助10
11秒前
12秒前
啊擦删除完成签到,获得积分10
12秒前
雨辰完成签到,获得积分10
12秒前
无极微光应助张伯伦采纳,获得20
13秒前
王王碎冰冰完成签到,获得积分20
13秒前
zdx完成签到,获得积分20
14秒前
yangc发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420