Physics-informed neural network combined with characteristic-based split for solving Navier–Stokes equations

反向传播 人工神经网络 计算机科学 边值问题 边界(拓扑) 应用数学 趋同(经济学) 流量(数学) 数学优化 算法 人工智能 数学 数学分析 几何学 经济增长 经济
作者
Shuang Hu,Meiqin Liu,Senlin Zhang,Shanling Dong,Ronghao Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107453-107453 被引量:2
标识
DOI:10.1016/j.engappai.2023.107453
摘要

This paper presents a novel approach for solving the shallow-water transport equation using a physics-informed neural network (PINN) combined with characteristic-based split (CBS). Our method separates the variables, so it is no need to consider the weight coefficients between different loss functions. As not all partial derivatives are involved in the gradient backpropagation, our method can save half of the memory occupation without losing accuracy, and resulting in a significant reduction in computation time compared to traditional PINN. We solving the progress of the dispersion of hot water under known flow fields. Furthermore, we propose a boundary condition that accounts for the second-order partial derivative term, which is more appropriate for solving the diffusion equation with open domains than the commonly used assumption of zero boundary values. Our numerical results demonstrate that this boundary condition leads to improved convergence of the network. In addition, we introduce a parameter estimation method to estimate the diffusion coefficient of hot water flow, which requires information from the field at only two different times. We observe that excessive participation of variables in gradient backpropagation can lead to neural networks getting trapped in local optima. We use PINN combined with CBS method to solve 3-D incompressible flow. As the number of variables involved in gradient backpropagation increases, the accuracy of the solution decreases, which can partially support our viewpoint. The source codes for the numerical examples in this work are available at https://github.com/double110/PINN-cbs-.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Yidie采纳,获得10
刚刚
英姑应助yanliu采纳,获得10
1秒前
1秒前
Akira完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
goodltl完成签到 ,获得积分10
3秒前
3秒前
Owen应助大胆的向松采纳,获得10
3秒前
Adc应助Chen采纳,获得10
3秒前
4秒前
大模型应助66采纳,获得10
4秒前
香蕉觅云应助Joyan采纳,获得10
4秒前
chenct002发布了新的文献求助10
5秒前
5秒前
6秒前
火星上的刚完成签到,获得积分10
6秒前
6秒前
Albert-JT完成签到,获得积分10
6秒前
orixero应助苹果文博采纳,获得10
6秒前
7秒前
7秒前
ZSQ发布了新的文献求助10
7秒前
lvlv发布了新的文献求助10
9秒前
Adc应助yaswer采纳,获得10
9秒前
10秒前
独云发布了新的文献求助10
10秒前
10秒前
11秒前
暴富小羊发布了新的文献求助10
12秒前
12秒前
xuxu发布了新的文献求助10
12秒前
缓慢的翅膀完成签到,获得积分10
12秒前
longer发布了新的文献求助10
13秒前
韩国慈禧太后完成签到,获得积分10
13秒前
咖啡机完成签到,获得积分10
14秒前
14秒前
宇月幸成发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721428
求助须知:如何正确求助?哪些是违规求助? 5265735
关于积分的说明 15294026
捐赠科研通 4870760
什么是DOI,文献DOI怎么找? 2615607
邀请新用户注册赠送积分活动 1565381
关于科研通互助平台的介绍 1522454