分数布朗运动
数学
布朗运动
数学分析
李普希茨连续性
随机微分方程
离散化
随机偏微分方程
几何布朗运动
分布(数学)
统计物理学
随机过程
扩散过程
应用数学
偏微分方程
物理
统计
知识管理
创新扩散
计算机科学
作者
Guangjun Shen,Jiayuan Yin,Junfeng Liu
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2023-08-15
卷期号:29 (3): 1402-1426
标识
DOI:10.3934/dcdsb.2023138
摘要
In this paper, we aim to study the asymptotic behavior for a class of distribution dependent stochastic partial differential equations (SPDEs) driven by fractional Brownian motion with fast and slow time-scales. We first establish the well-posedness of distribution dependent SPDEs driven by fractional Brownian motion under the non-Lipschitz conditions using Carathéodory approximation. Then, using classical Khasminskii time discretization, we establish that stochastic averaging principle for a class of fast and slow system of distribution dependent SPDEs driven by fractional Brownian motion.
科研通智能强力驱动
Strongly Powered by AbleSci AI